2.0 KiB
#start of lecture 1
Intro (Newton example):
The prof decided to open with a real-world problem where we find the equations that describe a falling object using differential equations (DE's):
We know F=ma
F=m\frac{dv}{dt}=mg-kv
<- we account for air resistance here. We can approximate that the force of air resistance is proportional to the speed times a constant k.
We can rearrange and solve it as it is a separable DE:
\frac{dv}{mg-kv}=\frac{dt}{m}
integrating both sides:
\int \frac{dv}{mg-kv}=\frac{t}{m}+C
let u=mg-kv \quad du=-kdv
\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}+C
Very cool, but I want the velocity as a function of time, isolate v
\ln\mid mg-kv\mid=-\frac{kt}{m}+C
\mid mg-kv\mid=e^{\frac{-kt}{m}+C}=e^{\frac{-kt}{m}}e^C
e^C
is a + constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the e^C
constant with an arbitrary constant A that can be + or -
mg-kv=Ae^{\frac{-kt}{m}}
so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})
$
Separable DE:
\frac{dy}{dx}=f(y)g(x) \rightarrow \frac{dy}{f(y)}=g(x)dx\quad where\quad f(y)\ne0
Since these are so similar, I'm calling these two #de_s_type1 Note that
\frac{1}{f(y)}
is still an arbitrary function of y. So you could also say:k(y)dy=g(x)dx
is a separable equation.
#ex #de_s_type1
\frac{dy}{dt}=\frac{1-t^2}{y^2}
y^2dy=dt(1-t^2)
integrating both sides yields:
\frac{y^3}{3}=t-\frac{t^3}{3}+C
finally we get:
y=(3t-t^3+C)^\frac{1}{3}
Initial value problem (IVP):
A Differential equation with provided initial conditions.
#ex #IVP #de_s_type1
\frac{dy}{dx}=2x\cos^2(y), \quad y(0)=\frac{\pi}{4}
\frac{dy}{\cos^2(y)}=2xdx
integrate both sides yields:
\int \frac{dy}{\cos^2(y)}=\tan(y)+C=x^2
plug in y(0)=\frac{\pi}{4}
\tan\left( \frac{\pi}{4} \right)+C=0
1+C=0
C=-1
So, the answer is:
y=\arctan(x^2+1)
#end of Lecture 1
\int \frac{1}{x^5} \, dx
a\in\mathbb{C}
\Rightarrow