MATH201/content/Fourier Series (lec 28-29).md

211 lines
14 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#fourier
Remember the heat flow equation? We obtained that it's solution could be expressed in the form:
$$\sum_{n=1}^\infty c_{n}\sin\left( \frac{n\pi x}{L} \right)\quad\text{for}\quad0\leq x\leq L$$
But what is $c_{n}$? They are the coefficients of a Fourier transform. We want to develop a way to compute them.
Let's derive how to compute the coefficients of a Fourier transform. (feel free to skip to the end)
$f(x)=\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right)$ where $L$ is length of the rod
This is a Fourier series: it's a more general form of what we have above.
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right)$
$x \in [-L,L]$
It converges to $f(x)$ almost everywhere (convergence will be discussed below)
Has a lot of benefits over Taylor series. $f(x)$ doesn't have to be infinitely differentiable (analytic)
$f(x)$ can even have jump discontinuities
Let's assume the equation is true when $x \in [-L,L]$
Integrate both sides, it will tell us the DC offset:
$\int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L (\text{put summation here}) \, dx$
$\int _{-L}^L \cos\left( \frac{n\pi x}{L} \right) \, dx=\frac{L}{n\pi}\sin\left( \frac{n\pi x}{L} \right)|_{-L}^L=0$
same for $\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\, dx=0$ (it equals 0)
so
$\int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L0 \, dx$
$\int _{-L} ^L f(x) \, dx=a_{0}L$
$a_{0}=\frac{1}{L}\int _{-L}^{L} f(x) \, dx$
Now let's multiply both sides by $\cos\left( \frac{m\pi x}{L} \right)$ and integrate both sides, this will tell us the $\cos$ components:
$\int _{-L}^L f(x)\cos\left( \frac{m\pi x}{L} \right)\, dx=\frac{a_{0}}{2}\cancelto{ 0 }{ \int _{-L}^L \cos\left( \frac{m\pi x}{L} \right) \, dx }+\sum_{n=1}^\infty\left( a_{n}\int _{-L}^L\cos\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right) \, dx +b_{n}\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right)\right) \, dx$
use trig identities (will be provided on exam):
$\cos(\alpha)\cos(\beta)=\frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$
$\sin(\alpha)\cos(\beta)=\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$
$\sin(\alpha)\sin(\beta)=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$
$\int _{-L}^L \cos \frac{n\pi x}{L}\cos \frac{m\pi x}{L}\, dx=\frac{1}{2}(\int _{-L}^L \left( \cos(\frac{(n-m)\pi x}{L} )+\cancelto{ 0 }{ \cos(\frac{(n+m)\pi x}{L} })\right)dx$
$= \begin{cases}0 & n\ne m \\L & n=m\end{cases}$
$\int _{-L}^L \sin \frac{n\pi x}{L}\cos \frac{m\pi x}{L} \, dx=\int _{-L}^L \text{odd}\, dx=0$
so:
$\int _{-L} ^L f(x)\cos\left( \frac{m\pi x}{L} \right)\, dx=a_{m}L$
Similarly can be done for when multiplying both sides by $\sin\left( \frac{m\pi x}{L} \right)$ and integrating both sides to find the $\sin$ coefficients:
$\int _{-L}^L f(x)\sin\left( \frac{m\pi x}{L} \right)\, dx=\frac{a_{0}}{2}\cancelto{ 0 }{ \int _{-L}^L \sin\left( \frac{m\pi x}{L} \right) \, dx }+\sum_{n=1}^\infty\left( a_{n}\cancelto{ \text{odd} }{ \int _{-L}^L\cos\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right) } \, dx +b_{n}\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right)\right) \, dx$
$\int _{-L} ^L \sin\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right) \, dx=\frac{1}{2}\int_{-L}^L \cos\left(\frac{(n-m)\pi x}{L} \right)-\cos\left( \frac{(n+m)\pi x}{L} \right)dx$
$=\begin{cases}0, & n\ne m \\L, & n=m\end{cases}$
so:
$\int _{-L} ^L f(x)\sin\left( \frac{m\pi x}{L} \right)\, dx=b_{m}L$
In conclusion:
$$a_{m}=\frac{1}{L}\int _{-L}^L f(x)\cos \frac{m\pi x}{L} \, dx \quad\text{valid for all }m=0,1,2,\dots$$
$$b_{m}=\frac{1}{L}\int _{-L}^L f(x)\sin \frac{m\pi x}{L} \, dx=b_{m} \quad m=1,2,\dots$$
Now we know how to compute the coefficients for Fourier series!
properties:
for functions $f$, $g$, If $\int _{-L}^Lf(x)g(x) \, dx=\begin{cases}0 & f\ne g \\L & f=g \end{cases}$
then $f, g$ are orthogonal
the Fourier expansion is called an ortho normal expansion, Taylor is not orthonormal.
#end of lec 28
#start of lec 29
Last lecture we derived how to find the coefficients of a Fourier series.
$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right)$
$x \in [-L,L]$
### 1st convergence theorem:
If $f$ and $f'$ are piecewise continuous on $[-L,L]$, then the Fourier series converges to:
$\frac{1}{2}(f(x^-)+f(x^+))$ for all $x \in (-L,L)$
and on $x=\pm L$ the Fourier series converges to $\frac{1}{2}(f(-L^+)+f(L^-))$
![draw](drawings/Drawing-2023-11-22-13.15.26.excalidraw.png)
Recall the definition of piecewise continuous: $f(t)$ is piecewise continuous on an interval $I$ if $f(t)$ is continuous on $I$, except possibly at a <u>finite</u> number of points of <u>jump</u> discontinuity (horizontal asymptotes not allowed).
### 2nd Convergence theorem (uniform convergence):
If $f(x)$ is continuous on $(-\infty,\infty)$ and $2L$ periodic and if $f'$ is piecewise continuous on $[-L,L]$, then its Fourier series converges to $f(x)$ everywhere (i.e., the Fourier series converges uniformly).
![draw](drawings/Drawing-2023-11-22-13.14.05.excalidraw.png)
#ex #fourier
Let's compute the Fourier transform of:
$$f(x)=\begin{cases}1, & -\pi\leq x\leq 0 \\x, & 0<x\leq \pi\end{cases}$$
$L$ here is $\pi$ clearly.
Let's find the coefficients $a_{n}$ and $b_{n}$
Use the formula we derived earlier:
$a_{n}=\frac{1}{\pi}\left( \int _{-\pi}^0 1\cos\left( \frac{n\pi x}{\pi} \right)\, dx +\int _{0}^\pi x\cos(nx)\, dx\right)$
Using integration by parts (for the second integral):
$=\frac{1}{\pi}\left( \frac{1}{n}\cancelto{ 0 }{ \sin(nx) |_{-\pi}^0} + \frac{1}{n}x\cancelto{ 0 }{ \sin(nx) |_{0}^\pi}-\frac{1}{n}\int _{0}^\pi \sin(nx) \, dx \right)$
$a_{n}=\frac{1}{n^2\pi}(\cos(nx)|_{0}^\pi)=\frac{1}{n^2\pi}(\underbrace{ \cos(n\pi) }_{ (-1)^n }-1)$
$a_{n}=\frac{1}{n^2\pi}((-1)^n-1)\quad n=1,2,\dots$
Now let's find $b_{n}$
$b_{n}=\frac{1}{\pi}\left( \int _{-\pi}^0\sin(nx) \, dx+\int _{0}^\pi x\sin(nx) \, dx \right)$
$=\frac{1}{\pi}[ \frac{-1}{n}\underbrace{ \cos(nx)|_{-\pi}^0 }_{ 1-(-1)^n }-\frac{1}{n}( \underbrace{ x\cos(nx)|_{0}^\pi }_{ \pi(-1)^n-0 }-\underbrace{ \int _{0}^\pi \cos(nx)\, dx }_{ 0 } ) ]$
$b_{n}=\frac{1}{n\pi}((-1)^n-1-\pi(-1)^n)$
$b_{n}=\frac{1}{n\pi}((-1)^n(1-\pi)-1) \quad n=1,2,\dots$
we find that
$$a_{2n}=0 \qquad n=1,2,3,\dots$$
$$a_{2k-1}=-\frac{2}{n^2\pi} \qquad k=1,2,3\dots$$
what about when $n=0$?
$a_{0}=\frac{1}{\pi}\left( \int _{-\pi}^0 \, dx+\int _{0}^\pi x \, dx \right)$
$a_{0}=\frac{1}{\pi}\left( x|_{-\pi}^0+\frac{x^2}{2}|_{0}^\pi \right)$
$a_{0}=\frac{1}{\pi}\left( 0+\pi+\frac{\pi^2}{2} \right)$
$$a_{0}=\frac{\pi}{2}+1$$
#ex Let's compute the Fourier transform of:
$$f(x)=x \qquad -\pi\leq x\leq \pi$$
We have to take a windowed form of $f$ to make this possible, $L=\pi$
At the left and right edge of the interval, the Fourier series is equal to 0. (1st convergence theorem.)
Find the coefficients:
$a_{n}=\frac{1}{\pi}\int _{-\pi}^\pi x\cos(nx) \, dx=0$
$$a_{n}=0$$
Why is it zero? because the integrand is an odd function. (odd times even is odd.) and because we are integrating from $-\pi$ to $\pi$ (a symmetric interval)
definition of odd: $f(x)=-f(-x)$
definition of even: $f(x)=f(-x)$
odd times even is odd.
odd times odd is even.
even times even is even.
huge exam time saving technique.
Find $b_{n}$:
$b_{n}=\frac{1}{\pi}\int _{-\pi}^\pi x\sin(nx) \, dx=\frac{2}{\pi}\int _{0}^\pi x\sin(nx) \, dx$ <- that's even, don't be a silly goose and say it's $0$
Using integration by parts:
$b_{n}=\frac{2}{\pi}\left( x\left( -\frac{1}{n}\cos(nx)|_{0}^\pi \right)-\int_{0}^\pi -\frac{1}{n}\cos(nx) \, dx \right)$
$b_{n}=\frac{2}{\pi}\left( -\frac{\pi}{n}(-1)^n+\frac{1}{n^2}\cancelto{ 0 }{ \sin(nx)|_{0}^\pi } \right)$
$$b_{n}=\frac{2}{n}(-1)^{n+1}$$
another take away: if $f$ is odd, the $\cos$ terms are $0$
if $f$ is even, the $\sin$ terms are $0$.
if $f$ is only defined between $0$ and $L$:
you can create an odd extension: $\bar{f}(x)=\begin{cases}f(x) & 0\leq x\leq L \\-f(-x), & -L\leq x<0 & & \end{cases}$
this will contain only $\sin$ terms.
You also have a choice to extend it as an even function, symmetrically across the $y$ axis.
$\bar{f}(x)=\begin{cases}f(x) & 0\leq x\leq L \\f(-x), & -L\leq x<0 & & \end{cases}$
This will contain only $\cos$ terms.
#end of lec 29
#start of lec 30
From last lecture:
$f(x)$ is defined on $[0,L]$
odd extension:
$\bar{f}(x)=\begin{cases}f(x), & 0\leq x\leq L \\-f(-x,) & -L\leq x<0\end{cases}$
and the $a$ coefficients ($\cos$ terms) are zero.
not only that, but the $b$ coefficients are:
$b_{n}=\frac{1}{L}\int _{-L}^L\bar{f}(x) \sin\left( \frac{n\pi x}{L} \right) \, dx$
$$b_{n}=\frac{2}{L}\int _{0}^L f(x)\sin\left( \frac{n\pi x}{L} \right)\, dx$$
and $\bar{f}(x)$ is:
$$\bar{f}(x)=\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right)$$
"How about that, this is called a Fourier sine series."
For even extension:
$\bar{f}(x)=\begin{cases}f(x), & 0\leq x\leq L \\f(-x,) & -L\leq x<0\end{cases}$
and the $b$ coefficients ($\sin$ terms) are zero.
not only that but the $a$ coefficients are:
$a_{n}=\frac{1}{L}\int _{-L}^L\bar{f}(x) \cos\left( \frac{n\pi x}{L} \right) \, dx$
$$a_{n}=\frac{2}{L}\int _{0}^L f(x)\cos\left( \frac{n\pi x}{L} \right)\, dx$$
and $\bar{f}$ is:
$$\bar{f}(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty a_{n}\cos\left( \frac{n\pi x}{L} \right)$$
Remember that $\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right)$ was the expansion of the eigen value function from the heat equation?
then $\frac{a_{0}}{2}+\sum_{n=1}^\infty a_{n}\cos\left( \frac{n\pi x}{L} \right)$ is also an expansion of some related eigen value function. It's interesting to note.
#ex #fourier Fourier sine series for:
$$f(x)=x^2 \qquad 0\leq x\leq \pi$$
Well that means we want the odd extension:
![draw](drawings/Drawing-2023-11-24-13.15.17.excalidraw.png)
the $a_{n}$ (cosine) terms are zero.
the $b_{n}$ terms are:
$b_{n}=\frac{2}{\pi}\int _{0}^\pi x^2\sin(nx) \, dx$
$=-\frac{2}{n\pi}\left[ x^2\cos(nx)|_{0}^\pi-2\int _{0}^\pi x\cos(nx)\, dx \right]$
$=-\frac{2}{n\pi}\left[ \pi^2(-1)^n-\frac{2}{n}\left( x\cancelto{ 0 }{ \sin(nx) }|_{0}^\pi-\int _{0}^\pi \sin(nx)\, dx \right) \right]$
$b_{n}=-\frac{2}{n\pi}[ \pi^2(-1)^n-\frac{2}{n^2}\underbrace{ \cos(nx)|_{0}^\pi }_{ (-1)^n-1 }]=\frac{2\pi}{n}(-1)^{n+1}+\frac{4}{n^3\pi}((-1)^n-1)$ for $n=1,2,3,\dots$
Note no $n=0$ so no division by zero problems here.
#ex #fourier Fourier cosine series of $f(x)=\sin(x)$ for $0\leq x\leq \pi$
![draw](drawings/Drawing-2023-11-24-13.23.08.excalidraw.png)
$b_{n}$ (sine) terms are all zero obviously, as it's asking for a Fourier cosine series, i.e., we are doing an even extension.
$a_{n}=\frac{2}{\pi}\int _{0}^\pi \sin(x)\cos(nx)\, dx$ for $n=0,1,2,\dots$ <-Odd, but not symmetrical bounds. We can't rule out that it's zero.
>Don't be a silly goose and try changing the bounds by removing that 2 in the front. If you did, you'd also have to change $\sin(x)$ to $\bar{f}$ which is $abs(\sin(x))$ and then you're integrating $a_{n}=\frac{1}{\pi}\int _{-\pi}^\pi |\sin(x)|\cos(nx)\, dx$ which is even$\times$even.
Use trig identity: (by the way the identities will be provided in the final exam.)
$=\frac{2}{\pi} \frac{1}{2}\int _{0}^\pi \left[\sin((1-n)x)+\sin((n+1)x)\right]\, dx$
Integrating gives you:
$\frac{1}{\pi}( \frac{-1}{1-n}\underbrace{ \cos((1-n)x)|_{0}^\pi }_{ (-1)^{n+1}-1 } +\frac{-1}{n+1}\underbrace{ \cos((n+1)x)|_{0}^\pi }_{ (-1)^{n+1}-1 })$
$a_{n}=-\frac{1}{\pi} \frac{1}{n+1}(-1)^{n+1}+\frac{1}{\pi} \frac{1}{n+1}+\frac{1}{\pi} \frac{1}{-(1-n)}(-1)^{n+1}+\frac{1}{\pi} \frac{1}{1-n}$
$a_{n}=-\frac{1}{\pi} \frac{1}{n+1} (-1)^{n+1}+\frac{1}{\pi} \frac{1}{n+1}+\frac{1}{\pi} \frac{1}{n-1}(-1)^{n-1}-\frac{1}{\pi} \frac{1}{n-1}$
Assuming that $n\ne0,1$. (note: $n=-1$ is a non-issue since negative coefficients are never considered when taking a Fourier transform.)
So what is $a_{0}, a_{1}$?
$a_{0}=\frac{2}{\pi}\int _{0}^\pi \sin(x) \, dx=\frac{4}{\pi}$
$a_{1}=\frac{2}{\pi}\int _{0}^\pi \sin(x)\cos(x) \, dx=\frac{1}{\pi}\int _{0}^\pi \sin(2x)\, dx=0$
<i>"zero is a very very special number it took humanity many numbers of years to invent zero"</i> referring to when dividing by 0.
Additionally we know that the terms cancel when:
$a_{2k-1}=0$ for $k=1,2,\dots$
$a_{2k}=\frac{2}{\pi} \frac{1}{2k+1}-\frac{2}{\pi} \frac{1}{2k-1}$ for $k=1,2,\dots$
then:
$$\bar{f}(x)=\frac{2}{\pi}+\frac{2}{\pi}\sum_{k=1}^\infty\left( \frac{1}{2k+1}-\frac{1}{2k-1} \right)\cos(2k\pi x)$$
Even with 10 terms, we get a pretty good approximation:
![fouriercosineofsin.png](drawings/fouriercosineofsin.png)
Here's a little script that generates an audible waveform of this Fourier series!
<html>
<head>
<script src="https://code.jquery.com/jquery-2.1.1.min.js"></script>
  <meta charset="utf-8">
</head>
<body>
  <label for="real_coff">$a_n$ formula:</label>
  <input type="text" id="realc" name="real_coff" size="50" value="real[2&starn] = (2/Math.PI)&star( 1/(2&starn+1)-1/(2&starn-1) )">
  </br>
  <label for="imag_coff">$b_n$ formula:</label>
  <input type="text" id="imagc" name="imag_coff" size="50" value="">
    <button id="playButton">Play the sound</button>
</br>
  <canvas id='scope'></canvas>
  <canvas id='spectrum'></canvas>
<div class="slidecontainer">
<p>Number of harmonics: <span id="textHarmonics"></span></p>
  <input type="range" min="0" max="100" value="50" style="width: 500px;" id="sliderHarmonics">
</div>
<div class="slidecontainer">
  <p>Frequency (for $n=1$): <span id="textFreq"></span></p>
  <input type="range" min="0" max="440" value="220" style="width: 500px;" id="sliderFreq">
</div>
<script src="playaudio.js"></script>
</body>
</html>
You can generate any arbitrary Fourier series with this. Try putting
imag[n] = (2*Math.PI/n)*(-1)**(n+1)+4/((n**3)*Math.PI)*((-1)**(n)-1)
for the $b_{n}$ formula and delete the $a_{n}$ formula. Now it will show the fourier sin series of $x^2$ we derived earlier!
you can also make some nasty sounds, try this one:
imag[Math.floor(n**1.1)] = (-1)**(n)*1/(2*n)+Math.random()/10
We have prepared ourselves now, now we start solving PDE's. He's encouraging us to attend the lectures in these last two weeks. He's making it sound like PDE's are hard.