5.2 KiB
#start of lecture 11
last lecture we did cauchy euler equations:
ax^2{\frac{d^2y}{dx^2}+bx{\frac{ dy }{ dx }}+cy=f(x)},\ x>0
where a,\ b,\ c
are still constants and \in \mathbb{R}
x=e^t
a{\frac{d^2y}{dt^2}}+(b-a){\frac{dy}{dt}}+cy=f(e^t)
<- lousy notation, the y here isnt quite the same as in the above definition.y=x^r
ar^2+(b-a)r+C=0
three cases: (i)r_1\ne r_{2}
then:y_{h}(x)=c_{1}x^{r_{1}}+c_{2}x^{r_{2}}
(ii)r_{1}=r_{2}=r
then:y_{h}(x)=c_{1}x^r+c_{2}x^r\ln(x)
(iii)r_{1,2}=\alpha+i\beta
then:y_{h}(x)=x^2(c_{1}\cos(\ln \beta x)+c_{2}\sin \ln(\beta x))
now find one particular solution for a non homogenous soultion, using variation of parameters, combine the y_h and y_p to get y(x).
not all equations can fall into cauchy euler type.
y''+p(x)y'+q(x)y=f(x)
(1) <- no general solution procudure always
but, if y_{1}(x)
solves y''+p(x)y'+q(x)y=0
then we can find the general solution to the non homogenous equation (1) by guessing it in the form y(x)=v(x)y_{1}(x)
y'=v'y_{1}+vy_{1}'
y''=v''y_{1}+2v'y_{1}'+vy_{1}''
(v''y_{1}+2v_{1}'y_{1}'+y_{1}''v)+p(x)(v'y_{1}+vy_{1}')+q(x)vy_{1}=f(x)
v\cancelto{ 0 }{ (y_{1}''+p(x)y_{1}'+q(x)y_{1}) }+v''y_{1}+(2y_{1}'+p(x)y_{1})v'=f
y_{1}v''+()
v''+\left( \frac{2y_{1}'}{y_{1}}+p \right)v'=\frac{f}{y_{1}}
v'=u
u'+\left( \frac{2y_{1}'}{y_{1}}+p \right)u=\frac{f}{y_{1}}
<- this is a linear first order equation
how to solve linear first order equation? we compute the integrating factor \mu
\mu=e^{\int(2y_{1}'/y_{1}+p)dx}=e^{\ln(y_{1})^2}e^{\int P(x) \, dx}=y_{1}^2e^{\int p(x) \, dx}
isnt this nice? some kind of magic. We made some guesses and we arrived somewhere.
#ex find the general solution to the equation:
y''+4xy'+(4x^2+2)y=8e^{-x(x+2)}
if y_{1}(x)=e^{-x^2}
is one solution.
therefore were finding the solution of the form: y(x)=v(x)y_{1}=v(x)e^{-x^2}
v'=u
u'+\left( \frac{2y_{1}'}{y_{1}}+4x \right)u=\frac{8{e^{-x^2}e^{-2x}}}{e^{-x^2}}
<-(p(x)=4x)
u'+\left( \frac{2{e^{-x^2}(-2x)}}{e^{-x^2}}+4x \right)u=8e^{-2x}
u'=8e^{-2x}
u=-4e^{-2x}+c_{1}
v'=u=-4e^{-2x}+c_{1}
v(x)=2e^{-2x}+c_{1}x+c_{2}
general solution:
y(x)=v(x)y_{1}(x)=(2e^{-2x}+c_{1}x+c_{2})e^{-x^2}
Free vibrations
Free vibrations are when there are no externally applied forces acting upon an oscillatory system. RHS=0.
mr^2+br+k=0
characteristic polynomial
(i) r_{1}\ne r_{2}
b^2-4mk>0
y_{h}(t)=c_{1}e^{r_{1}t}+c_{2}e^{r_{2}t}
r_{1,2}=-\frac{b}{2m}\pm \frac{\sqrt{ b^2-4mk }}{2m}<0
then the limit of the homogenous solution is 0 as t->\infty
(over damped case)
(ii) r_{1}=r_{2}=-\frac{b}{2m}
r_{1}=r_{2}=-\frac{b}{2m}
y_{h}(t)=e^-\frac{b}{2m}+c_{2}te^{-b/2m}t
limit =0 as t approaches inf (critically damped)
#end of lec 11 #start of lec 12 (oct 2 2023)
!Drawing 2023-10-02 13.02.06.excalidraw
let \omega =\frac{\sqrt{ 4mk-b^2 }}{2m}
(angular frequency)
then the underdamped case is:
y(t)=(c_{1}\cos \omega t+c_{2}\sin \omega t)e^{\frac{-b}{2m}t}
we know the trig identity:
\sin(\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha \sin \beta
cant make c_1 c_2 sin or cos so what we do?
do a power transform to convert cartesian into cylindrical coordinates
c_{1}=A\sin \phi
c_{2}=A\cos \phi
then:
Ae^{-bt/2m}(\sin \phi \cos \omega t+\cos \phi \sin \omega t)
=Ae^{-bt/2m}\sin(\omega t+\phi)
where \phi
is the phase shift.
and \frac{\omega}{2\pi}
is the natural frequency
\frac{2\pi}{\omega}
is the period
but this is all classical mechanics, but beatifully the world of electronic circuits of R L C also has these equations. Biology too. Nature is beautiful and harmonic.
btw we know A=\sqrt{ c_{1}^2+c_{2}^2 }
and \tan \phi=\frac{c_{1}}{c_{2}}
so we can get A and phi from c_1 and c_2.
this under damped case also reaches 0 as t->\infty
this system in the drawing is in free vibrattion (RHS=0 means no external force=free vibration.)
#ex
y''+by'+25y=0 \qquad y(0)=1\quad y'(0)=0
- b=0 -> no friction in the system (undamped)
b^2-4mk
y(t)=c_{1}\cos 5t+c_{2}\sin 5t
y(0)=c_1=1
y'(0)=0=c_{2}
then\sin 5t\Rightarrow y(t)=\cos(5t)=\sin\left( 5t+\frac{\pi}{2} \right)
(by trig identity) important take away from undamped case: amplitude is constant 1, oscillates forever. - b=6
compute
b^2-4mk=36-4*25=-64
r_{1,2}=-\frac{6}{2}\pm4i
y(t)=e^{-3t}(c_{1}\cos4t+c_{2}\sin4t)
still under damped situation.y(0)=1=c_{1}
y'(0)=0=-3c_{1}+4c_{2}\Rightarrow c_{2}=\frac{3}{4}
A=\frac{5}{4}
\tan \phi=\frac{4}{3}
\phi \approx 0.9273\dots
y(t)=\frac{5}{4}e^{-3t}\sin(4t+\phi)
"I know engineers love calculators, I know mathematicians hate calculators, and that's probably the only difference between mathematicians and engineers." -Peter (referring to calculating arctan(4/3) on an exam)
3) b=10
r_{1,2}=-5
y(t)=(c_{1}+c_{2}t)e^{-5t}
y(0)=1=c_{1}
y'(0)=c_{2}-5c_{1}=0
c_{2}=5
y(t)=(1+5t)e^{-5t}\rightarrow0_{as\ t\to\infty}
y(t)=(1+5t)e^{-5t}>0
4) b=12
r_{1,2}=-6\pm \sqrt{ 11 }
y(t)=c_{1}e^{(-6\pm \sqrt{ 11 })t}+c_{2}e^{(-6-\sqrt{11 })t}
y(0)=c_{1}+c_{2}=1
y'(0)=(-6+\sqrt{ 11 })c_{1}+(-6-\sqrt{ 11 })c_{2}=0
c_{1}=\frac{11+6\sqrt{ 11 }}{22}
c_{2}=\frac{{11-6\sqrt{ 11 }}}{22}
this is an over damped case.
lets look at the graphs: (graphs featuring the three cases shown on projector.) #end of lec 12