MATH201/content/Systems of linear equations...

4.4 KiB

#ex #SoLE Lets start modelling some electric circuits again: draw The circuit is switched on (battery in series) at t=0 and is then switched off (battery is bypassed) at t=1 Applying KVL: 0.2I_{1}'+0.1I_{3}'+2I_{1}=g(t) \qquad \text{where } g(t)=\begin{cases}6, & 0\leq t\leq 1 \\0, & 1<t\end{cases} -I_{2}+0.1I_{3}'=0 I_{1}=I_{2}+I_{3} Voila, a system of three linear equations. #end of lec 21 #start of lec 22 eq 1) 0.2I_{1}'+0.1I_{3}'+2I_{1}=g(t) \qquad \text{where } g(t)=\begin{cases}6, & 0\leq t\leq 1 \\0, & 1<t\end{cases} eq 2) -I_{2}+0.1I_{3}'=0 eq 3) I_{1}=I_{2}+I_{3} Two differential equations, one algebraic equation. Our goal is to solve for I_{1}\ I_{2} and I_{3} express g in terms of unit step function: g(t)=6-6u(t-1) combine equations 2 and 3: -I_{1}+I_{3}+0.1I_{3}'=0 now we have just two equations: eq 1) 0.2I_{1}'+0.1I_{3}'+2I_{1}=6-6u(t-1) eq 2) -I_{1}+I_{3}+0.1I_{3}'=0 where I_1(0)=I_{2}(0)=I_{3}(0)=0 (the battery is just connected at t=0) multiply both equations by 10: 2I_{1}'+1I_{3}'+20I_{1}=60(1-u(t-1)) -10I_{1}+10I_{3}+I_{3}'=0 hit it with the LT! let: J_{1}=\mathcal{L}\{I_{1}(t)\}(s) J_3=\mathcal{L}\{I_{3}\} then: 2sJ_{1}-\cancel{ 2I_{1}(0) }+sJ_{3}-\cancel{ I_{3}(0) }+20J_{1}=\mathcal{L}\{60(1-u(t-1))\} 2(s+10)J_{1}+sJ_{3}=60\left( \frac{1}{s}-\frac{e^{-s}}{s} \right) =2(s+10)J_{1}+sJ_{3}=60 \frac{1-e^{-s}}{s} Now for the second eq, hitting it with the LT yields: -10J_{1}+(s+10)J_{3}=0 Let's isolate J_{1}: \begin{matrix} 2(s+10)J_{1}+sJ_{3}=60 \frac{1-e^{-s}}{s}&\qquad\quad\times(s+10) \\ -\quad-10J_{1}+(s+10)J_{3}=0&\times s \\ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄\end{matrix} =\quad2(s+10)(s+10)J_{1}+\cancel{ sJ_{3}(s+10) }+10sJ_{1}-\cancel{ s(s+10)J_{3} }=(s+10)60 \frac{1-e^{-s}}{s} =2(s^2+20s+100+5s)J_{1}=(s+10)60 \frac{1-e^{-s}}{s}

(s+5)(s+20)J_{1}=(s+10)30 \frac{1-e^{-s}}{s} J_{1}(s)=30 \frac{s+10}{s(s+5)(s+20)}(1-e^{-s}) use partial fractions: 30 \frac{s+10}{s(s+5)(s+20)}=\frac{A}{s}+\frac{B}{s+5}+\frac{C}{s+20} =\frac{{A(s+5)(s+20)+B(s^2+20s)+C(s^2+5s)}}{s(s+5)(s+20)} Solve the system of equations: A+B+C=0 25A+20B+5C=30 100A=300 \implies A=3 \implies B=-2 \qquad C=-1 J_{1}(s)=\left( \frac{3}{s}-\frac{2}{s+5}- \frac{1}{s+20} \right)(1-e^{-s}) invert the LT: (use \mathcal{L}^{-1}\{e^{-as}F(s)\}=f(t-a)u(t-a)) I_{1}=3-2e^{-5t}-e^{-20t}-u(t-1)(3-2e^{-5(t-1)}-e^{-20(t-1)}) Nice! Now we solve for I_{3}. Let's use: -10J_{1}+(s+10)J_{3}=0 J_{3}=\frac{10}{s+10}J_{1} J_{3}=300 \frac{1}{s(s+5)(s+20)}(1-e^{ -s }) partial fraction it so we can eventually take the inverse LT: skip some steps: J_{3}=\left( \frac{3}{s}-\frac{4}{s+5}+\frac{1}{s+20} \right)(1-e^{ -s }) I_{3}=3-4e^{ -5t }+e^{ -20t }-(3-4e^{ -5(t-1) }+e^{ -20(t-1) })u(t-1) Finally, I_{2} is simply: I_{2}=I_{1}-I_{3} Our final answer is:

\begin{matrix}I_{1}=3-2e^{-5t}-e^{-20t}-u(t-1)(3-2e^{-5(t-1)}-e^{-20(t-1)}) \\I_{3}=3-4e^{ -5t }+e^{ -20t }-(3-4e^{ -5(t-1) }+e^{ -20(t-1) })u(t-1) \\I_{2}=I_{1}-I_{3}\end{matrix}

Every 2nd order linear equation can be written as a system of 2 1st order linear equations: ay''+by'+cy=f y'=z \begin{cases}y'-z=0 \\az'+bz+cy=f\end{cases}

last example of the chapter: #ex x'+y=0, \qquad x(0)=0 x+y'=1-u(t-2) \qquad y(0)=0 This is a review problem in chapter 7 of the textbook. Hit equation 1 and 2 with the LT: sX+Y=0 X+sY=\frac{{1-e^{ -2s }}}{s} Let's isolate X multiply equation 1 by s and subtract eq 1 from eq 2: -(s^2-1)X=\frac{{1-e^{ -2s }}}{2} X(s)=e^{-2s} \frac{1}{s(s-1)(s+1)}-\frac{1}{s(s-1)(s+1)} use partial fractions: \frac{A}{s}+\frac{B}{s-1}+\frac{C}{s+1}=\frac{1}{s(s-1)(s+1)} A(s^2-1)+B(s^2+s)+C(s^2-s)=1 A+B+C=0 B-C=0 -A=1\implies A=-1 \implies B=\frac{1}{2} \qquad C=\frac{1}{2} X(s)=\left( -\frac{1}{s}+\frac{1}{2} \frac{1}{s-1}+\frac{1}{2} \frac{1}{s+1} \right)(e^{ -2s }-1) inverse laplace:

x(t)=1-\frac{1}{2}e^t-\frac{1}{2}e^{-t}-u(t-2)\left( 1-\frac{1}{2}e^{t-2} -\frac{1}{2}e^{-(t-2)}\right)

Now solve for y(t) too: Y=-sX=-s (\frac{-1}{s(s-1)(s+1)}+ \frac{e^{ -2s }}{s(s-1)(s+1)}) =\frac{1}{(s-1)(s+1)}- \frac{e^{-2s}}{(s-1)(s+1)} partial 'frac it: \frac{1}{(s-1)(s+1)}=\frac{A}{s-1}+\frac{B}{s+1} A(s+1)+B(s-1)=1 A+B=0 A-B=1 \implies A=\frac{1}{2} \quad B=-\frac{1}{2} =\frac{1}{2}(1-e^{-2s})\left( \frac{1}{s-1}-\frac{1}{s+1} \right)

\implies y(t)=\frac{1}{2}(e^t-e^{-t})-\frac{1}{2}u(t-2)(e^{t-2}-e^{-(t-2)})

we are done #end of lec 22