MATH201/erssasseOneDriveDocumentsOb...

143 lines
8.2 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

diff --git a/content/Cauchy-Euler equations (lec 10-11).md b/content/Cauchy-Euler equations (lec 10-11).md
index 4784e82..f5c9875 100644
--- a/content/Cauchy-Euler equations (lec 10-11).md
+++ b/content/Cauchy-Euler equations (lec 10-11).md
@@ -17,7 +17,7 @@ $\frac{dy}{dx}=\frac{dy}{dt}{\frac{dt}{dx}}=\frac{ dy }{ dt }{\frac{1}{x}}\Right
compute 2nd derivative of y wrt to x:
$\frac{d^2y}{dx^2}=\frac{d^2y}{dt^2} \frac{dt}{dx}\cdot \frac{dt}{dx}+\frac{dy}{dt}{\frac{d^2t}{dx^2}}=\frac{1}{x^2}{\frac{d^2y}{dt^2}}-\frac{\frac{1}{x^2}dy}{dt}$
$\underset{ \text{Important} }{ x^2{\frac{d^2y}{dx^2}}=\frac{d^2y}{dt^2}-\frac{dy}{dt} }$
-plugging those derivatives in we get:
+plugging those derivatives in we get: #remember
$$a\frac{d^2y}{dt^2}+(b-a){\frac{dy}{dt}}+cy(t)=f(e^t)$$
^ this is a constant coefficient second order non-homogenous equation now! We can solve it now using prior tools.

diff --git a/content/Convolution (lec 19-20).md b/content/Convolution (lec 19-20).md
new file mode 100644
index 0000000..30e89f1
--- /dev/null
+++ b/content/Convolution (lec 19-20).md
@@ -0,0 +1,84 @@
+# Convolution
+A convolution is an operation of function, we take two functions, convolute them and get a new function.
+Definition of convolution between f and g:
+$$(f*g)(t):=\int _{0} ^t f(t-v)g(v)\, dv$$
+property 1) $f*g=g*f$
+proof:
+$f*g=\int _{0} ^t f(t-v)g(v)\, \underset{ t-v=u }{ dv }=-\int _{t} ^0 f(u)g(t-u) \, du$
+$=\int _{0} ^t g(t-u)f(u)\, du=g*f \quad \Box$
+
+property 2) $(f+g)*h=f*h+g*h$
+property 3) $(f*g)*h=f*(g*h)$
+property 4) $f*0=0$
+property 5) $\mathcal{L}\{f*g\}=F(s)G(s)$
+he will see us tomorrow at 10oclock. ;)
+#end of lec 19
+#start of lec 20
+lets try proving property 5:
+recall property 5: $\mathcal{L}\{f*g\}=F(s)G(s)$
+$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^t f(t-v)g(v) \, dv \right)\, dt$
+$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^\infty u(t-v)f(t-v)g(v) \, dv \right)\, dt$
+two nested integrals!
+using math 209, if both integrals exist, we can exchange the two integrals:
+$=\int _{0}^\infty ( g(v)\underbrace{ \int _{0}^\infty e^{-st}f(t-v)u(t-v)\, dt }_{ \mathcal{L}\{f(t-v)u(t-v)\}=e^{-vs}F(s) } )\, dv$
+$=F(s)\int _{0} ^\infty e^{-rs}g(v)\, dv=F(s)G(s) \quad \Box$
+This is a very useful fact. We will see how it helps us solve differential equations.
+
+ex:
+$$\mathcal{L}^{-1}\left\{ \frac{1}{s^2+1}\frac{1}{s^2+1} \right\}$$
+we know the inverse of 1/s^2+1 is sin(t):
+then:
+$=(\sin*\sin)(t)$
+$=\int _{0}^t \sin(t-v)\sin(v)\, dv$
+use identity: $\sin \alpha \sin \beta=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\beta-\alpha)$ DOUBLE CHECK!
+$=\frac{1}{2}\int _{0} ^t (\cos(t-2v)-\cos(t))\, dv$
+$=\frac{1}{2}\left( -\frac{1}{2}\sin(t-2v)|^t_{0}-t\cos t \right)=\frac{1}{2}\left( \frac{1}{2}\sin(t)+\frac{1}{2}\sin(t)-t\cos t \right)$
+$$=\frac{1}{2}(\sin t-t\cos t)$$
+#ex 
+solve the problem:
+$$y'+y-\int _{0} ^t y(v)\sin(t-v) \, dv =-\sin t,\qquad y(0)=1$$
+this is called an integral-differential equation.
+we can convert it to a differential equation by taking the derivative of both sides (wrt to dt.):
+$y''+y'-y\sin(t-v)=-\cos t$
+ew thats a gross second order linear equation. lets do it another way
+
+$sY-1+Y-\mathcal{L}\{(y*\sin)(t)\}=-\frac{1}{s^2+1}$
+$\left( s+1-\frac{1}{s^2+1}\right)Y(s)=1-\frac{1}{s^2+1}=\frac{s^2}{s^2+1}$
+$\frac{(s^2+1)(s+1)-1}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$
+$\frac{s^3+s^2+s+\cancel{ 1 }-\cancel{ 1 }}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$
+$Y(s)=\frac{s}{s^2+s+1}$
+$y(t)=\mathcal{L}^{-1}\left\{ \frac{s}{s^2+s+1} \right\}=\mathcal{L}^{-1}\{\frac{s}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2}\}$
+$=\mathcal{L}^{-1}\left\{ \frac{s+\frac{1}{2}-\frac{1}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$
+$=e^{-t/2}\cos\left( \frac{\sqrt{ 2 }}{2}t \right)-\frac{1}{2} \frac{2}{\sqrt{ 3 }}\mathcal{L}^{-1}\left\{ \frac{\frac{\sqrt{ 3 }}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$
+$$y(t)=e^{-t/2}\left( \cos \frac{\sqrt{ 3 }}{2}t-\frac{1}{\sqrt{ 3 }} \sin \frac{\sqrt{ 3 }}{2}t\right)$$
+this is a good algorithmic method now for solving differential equations in software, for example solving circuits.
+
+## Transfer function
+imagine we have the equation:
+$$ay''+by'+cy=g(t), \qquad y(0)=y_{0},\ y'(0)=y_{1}$$
+1)
+$ay''+by'+cy=g(t)$
+$y(0)=y'(0)=0$
+gives a solution $y_{*}$
+2)
+$ay''+by'+cy=0$
+$y(0)=y_{0},\ y'(0)=y_{1}$
+gives a soltuion $y_{**}=c_{1}y_{1}+c_{2}y_{2}$
+
+then by principle of super position:
+$y=y_{*}+y_{**}$
+
+solving 1) gives us:
+$as^2Y+bsY+cY=G(s)$
+$Y(s)=\frac{1}{as^2+bs+c}G(s)$ the limit approaches 0 for large s so its a legitimate Laplace transform
+let $Y(s)=H(s)G(s)$
+where $H(s)=\frac{1}{as^2+bs+c}$ and called the transfer function
+
+we put in $g(t)$ and we get out $Y(s)$. So it "transfers".
+$H(s)=\frac{Y(s)}{G(s)}$
+$\mathcal{L}^{-1}\{H\}=h(t)$ called the impulse response function. We will see why its called that later.
+$y_{*}(t)=(h*g)(t)$
+$y(t)=(h*g)(t)+c_{1}y_{1}+c_{2}y_{2}$
+
+he's finished 8 minutes early, lets go!
+#end of lec 20
\ No newline at end of file
diff --git a/content/Laplace transform (lec 14-16).md b/content/Laplace transform (lec 14-16).md
index 21c65ed..a6565ba 100644
--- a/content/Laplace transform (lec 14-16).md
+++ b/content/Laplace transform (lec 14-16).md
@@ -17,7 +17,7 @@ compute the LT of this funny function:
$f(t)=\begin{cases}1 &\text{if } 0\leq t\leq 1 \\ 2 &\text{if } 1<t\leq 2 \\0 & \text{if } 2<t \end{cases}$
$F(s)=\int _{0}^1 e^{-st}\, dt+2\int _{1}^2 e^{-st}\, dt+0$
$F(s)=-\frac{1}{s}e^{-st}|_{t=0}^{t=1}-\frac{2}{s}e^{-st}|_{t=1}^{t=2}$
-$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{5}(e^{-2s}-e^{-s})$$
+$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{s}(e^{-2s}-e^{-s})$$
We have shown how to compute the LT of a choppy function.

$\mathcal{L}\{\alpha f(t)+\beta g(t)\}=\alpha \mathcal{L}\{f\}+\beta y\mathcal{L}\{g\}$
diff --git a/content/Things to remember.md b/content/Things to remember.md
index 0440b95..e6b8b5b 100644
--- a/content/Things to remember.md
+++ b/content/Things to remember.md
@@ -6,11 +6,18 @@ Also remember the following:
## derivatives of trigs
$\frac{d}{dx}\tan(x)=sec^2(x)$
$\frac{d}{dx}sec(x)=sec(x)\tan(x)$
-...
+$\frac{d}{dx}\csc=-\csc x\cot x$
+$\frac{d}{dx}\cot (x)=-\csc^2(x)$
## integrals of trigs
$\int \tan(x) \, dx=\ln\mid \sec(x)\mid+C$
$\int sec(x) \, dx=\ln\mid sec(x)+\tan(x)\mid+C$
-...
+$\int \csc x \, dx=-\ln|\csc x+\cot x|+C$
+$\int \cot x \, dx=-\ln|\csc x|+C$
+
+## Integrals:
+$\int \frac{1}{1+x^2} \, dx=\arctan(x)+C$
+
+
## integration by parts
LIATE -> log, inv trig, algebraic, trig, exp
set u to the first in the list above