MATH201/content/Bernoulli equations (lec 3).md

2.9 KiB

Bernoulli's equation:

\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad\quad n\in\mathbb{R},\quad n\ne0,1$$

I'm calling this #de_b_type1. This is in standard form btw.

It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you get a separable equation. So we ignore the cases when n=0,1 as these can be solved with prior tools.

Bernoulli's equations are important as you will see it in biology and in engineering. If y is + then y(x)=0 is a solution to the equation: \frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0 Let's move the y to the LHS: y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x) notice that y(x)=0 is no longer a solution! It was lost due to dividing by zero. So from here on out we will have to remember to add it back in our final answers. let y^{1-n}=u Differentiating this with respect to x gives us: (1-n)y^{-n}\frac{ dy }{ dx }=\frac{du}{dx} y^{-n}\frac{ dy }{ dx }=\frac{ du }{ dx }{\frac{1}{1-n}} substituting in we get: y^{-n}\frac{ dy }{ dx }+P(x)u=Q(x)=\frac{ du }{ dx }{\frac{1}{1-n}+P(x)u}

and we get a linear equation again: (Handy formula if you wanna solve specific Bernoulli equations quick.)

\frac{1}{1-n}\frac{ du }{ dx }+P(x)=Q(x)\quad \Box

Remember when I said that when n=1 the equation becomes a separable equation?: y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x) let n=1 y^{-1}\frac{ dy }{ dx }+P(x)=Q(x) y^{-1}dy=dx(Q(x)-P(x)) <-This is indeed a separable equation #de_s_type1


Examples of Bernoulli's equation:

#ex #de_b_type1 Find the general solution to: y'+y=(xy)^2 Looks like a Bernoulli equation because when we distribute the ^2 we get x^2y^2 on the RHS. This also tells us that n=2 y'+y=x^2y^2 y'y^{-2}+y^{-1}=x^2

Note that we lost the y(x)=0 solution here, we will have to add it back in the end.

let u=y^{1-n}=y^{-1} Differentiating wrt. x we get: \frac{du}{dx}=-y^{-2}{\frac{dy}{dx}} y^{-2}{\frac{dy}{dx}=-\frac{ du }{ dx }} y^{-2}{\frac{dy}{dx}+y^{-1}=-\frac{ du }{ dx }}+y^{-1} {x^2=-\frac{ du }{ dx }}+y^{-1} x^2=-\frac{du}{dx}+u \frac{du}{dx}-u=-x^2 Yay we have a linear equation now! We can solve it using the techniques & formulas we learned for them. let P(x)=-1 \quad Q(x)=-x^2 \qquad I(x)=e^{\int -1 \, dx}=e^{-x} u=-e^{x}\int e^{-x}x^2 \, dx How to integrate this? You can use integration by parts: LIATE: log, inv trig, alg, trig, exp \int fg' \, dx=fg-\int f'g \, dx let f=x^2 \qquad f'=2x \qquad g'=e^{-x} \qquad g=-e^{-x} u=-e^{x}\left( x^2(-e^{-x})-\int 2x(-e^{-x}) \, dx \right) u=-e^{x}\left( -x^2e^{-x}+2\int xe^{-x} \, dx \right) let f=x \qquad f'=1 \qquad g'=e^{-x} \qquad g=-e^{-x} u=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-\int -e^{-x} \, dx \right) \right) \frac{1}{y}=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-e^{-x} +C\right) \right) \frac{1}{y}=x^2+2(x+1+Ce^x) \frac{1}{y}=x^2+2x+2+Ce^x The general solution to the DE is:

y(x)=\frac{1}{x^2+2x+2+Ce^x} \quad\text{as well as}\quad y(x)=0

#end of lecture 3