forked from Sasserisop/MATH201
50 lines
2.7 KiB
Markdown
50 lines
2.7 KiB
Markdown
|
|
#start of lec 21
|
|
From newton's second law: $ma=F$
|
|
$m\frac{dv}{dt}=f(t)$
|
|
integrate both sides:
|
|
$m\int_{t_{0}} ^{t_{1}} \frac{dv}{dt}dt =\int _{{t_{0}}} ^{t_{1}}f(t) \, dt$
|
|
$mv(t_{1})-mv(t_{0})=\int _{t_{0}}^{t_{1}}f(t) \, dt$
|
|
that is, change in momentum on the LHS equates to an impulse on the RHS.
|
|
(picture shown, you can have the same impulse, the same area under the graph if you squish down $f(t)$ to be narrower, as long as you make it taller. If we take it to the extreme we get the Dirak delta function.)
|
|
|
|
# Dirak delta function
|
|
#dirak_delta
|
|
The definition of the Dirak delta function is:
|
|
$\delta(t-a)=\begin{cases}0, & t\ne a \\''\infty'', & t=a\end{cases}$
|
|
however, a more useful definition is:
|
|
$\int _{-\infty} ^{\infty} \delta(t-a)f(t)\, dt=f(a)$
|
|
|
|
properties:
|
|
$\int_{{-\infty}}^{\infty} \delta(t-a)\, dt=1$
|
|
![draw](drawings/Drawing-2023-10-25-13.16.20.excalidraw.png)
|
|
$\int _{-\infty} ^t \delta(t-a)\, dt=\begin{cases}0, & t<a \\ 1, & t\geq a\end{cases}=u(t-a)$
|
|
$u'(t-a)=\delta(t-a)$
|
|
|
|
What is $\mathcal{L}\{\delta(t-a)\}$?
|
|
$\mathcal{L}\{\delta(t-a)\}=\int _{0} ^\infty \delta(t-a)e^{-st} \, dt$ for $a>0$
|
|
Using the definition of Dirak $\int _{-\infty} ^{\infty} \delta(t-a)f(t)\, dt=f(a)$:
|
|
$$\mathcal{L}\{\delta(t-a)\}=\int _{-\infty} ^{\infty} e^{-st} \delta(t-a) \, dt=e^{-as}$$
|
|
## Examples of DE's with Dirak
|
|
#ex #second_order_nonhomogenous #dirak_delta #IVP
|
|
Solve for $w(t)$:
|
|
$$w''+6w'+5w=e^t\delta(t-1) \qquad w(0)=0 \qquad w'(0)=4$$
|
|
Solving this using something like #voparam would be very difficult, using LT should be very easy!
|
|
Hit it with the LT!
|
|
$s^2W-\cancel{ sw(0) }-\cancelto{ 4 }{ w'(0) }+6sW-\cancel{ 6w(0) }+5W=\int _{0} ^\infty e^{-st}e^t\delta(t-1)\, dt$
|
|
Now we try to isolate for $W$
|
|
$=s^2W-4+6sW+5W=\int _{-\infty} ^\infty e^{-st}e^t\delta(t-1)\, dt$
|
|
(we can extend the range of the integral as the integrand is 0 for all t<1)
|
|
this allows us to use the definition of Dirak on the RHS, namely: $\int _{-\infty} ^{\infty} \delta(t-a)f(t)\, dt=f(a)$
|
|
> Alternatively, you could have taken the laplace of the RHS by using properties 2 and 14 from the [big LT table](drawings/bigLTtable.png).
|
|
|
|
$W(s^2+6s+5)=4+ee^{-s}$
|
|
$W(s)=\frac{4}{(s+1)(s+5)}+\frac{ee^{-s}}{(s+1)(s+5)}$
|
|
Using partial fractions:
|
|
$w(t)=\mathcal{L}^{-1}\left\{ \frac{1}{s+1} - \frac{1}{s+5} \right\}+\frac{e}{4}\mathcal{L}^{-1}\left\{ e^{-s}\left( \frac{1}{s+1} - \frac{1}{s+5} \right) \right\}$
|
|
$=\underbrace{(e^{-t}-e^{ -5t }) }_{ \text{this came from initial conditions} }+\frac{e}{4}\mathcal{L}^{-1}\{\dots\}$
|
|
for second term use property:
|
|
$\mathcal{L}^{-1}\{e^{as}F(s)\}=f(t-a)u(t-a)$
|
|
$$y(t)= (e^{-t}-e^{ -5t }) +\frac{e}{4}u(t-1)(e^{ -(t-1) }-e^{ -5(t-1) })$$
|
|
notice that the right most term came from the impulse and the effect it had on the system.
|
|
side note: delta functions are useful for quantum physics. |