4.7 KiB
Variation of parameters
ay''+by'+cy=f(t)
y_{h}=c_{1}y_{1}(t)+c_{2}y_{2}t
<- h is homogenous, ie:f(t)=0
Lagrange proposed: find a particular solution ofy_{p}
y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)
<- btwy_{1}
andy_{2}
are often called a fundamental pair. we put y_p into the equation and make it equal to the RHSy'_{p}=v_{1}y_{1}+v_{1}y_{1}'+v_{2}'y_{2}+v_{2}y_{2}'
to avoid second derivatives in the equation and problems with uniqueness lagrange imposed:v_{1}y_{1}+v_{2}'y_{2}=0
this simplifies our work down the road as well. soy_{p}''=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''
a(v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}'')+b(v_{1}y_{1}'+v_{2}y_{2}')+c(v_{1}y_{1}+v_{2}y_{2})=f(t)
v_{1}(ay_{1}''+\cancelto{ 0 }{ by_{1}' }+cy_{1})+v_{2}(ay_{2}''+\cancelto{ 0 }{ by_{2}'C }+cy_{2})+a(v_{1}'y_{1}'+v_{2}'y_{2}')
v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}
\det \begin{pmatrix}y_{1} & y_{2} \\y_{1}'& y_{2}'\end{pmatrix}
= Wronskian =W[y_{1},y_{2}]\ne 0
by definitiony_1
andy_2
are linearly independent solutions so the above can never be 0!v_{1}'=\frac{{f(t)y_{2}t}}{aW[y_{1},y_{2}]}
;v_{2}'=-\frac{{f(t)y_{1}(t)}}{aW[y_{1},y_{2}]}
<- integrate both sizes to get v1,2. When integrating, you don't need to add a generic constant.
#ex #second_order #IVP
y''+4y=2\tan(2t)-e^t \qquad y(0)=0 \qquad y'(0)=\frac{4}{5}
can we use undetermined coefficients? yes and no
find general solution to homogenous counterpart
y''+4y=0
->r^2+4=0
->r_{1,2}=\pm 2i
y_{h}(t)=c_{1}\cos(2t)+c_{2}\sin(2t)
2y''+4y=-e^t
<- use method of undetermined coefficientsy_{p}'(t)=Ae^{t}
5Ae^t=-e^t
A=-\frac{1}{5}
y_{p}'(t)=-\frac{1}{5}e^t
(ii)y''+4y=2\tan(2t)
<- cant use method of undetermined coefficientsy_{p}^2(t)=v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)
plugging in: we get a system of eq:\cos(2t)v_{1}'+\sin(2t)v_{2}'=0
-2\sin(2t)v_{1}'+2\cos(2t)v_{2}'=2\tan(2t)
we know these two will give a unique solution. to solve system of eq multiply each by:
2\cos(2t)
\sin(2t)
2(\sin^2(2t)+\cos^2(2t))v_{2}'=2\tan(2t)\cos(2t)
v_{2}'=\sin(2t)
v_{2}(t)=-\frac{1}{2}\cos(2t)
no constant of integration, we want one solution only
v_{1}'=-{\frac{\sin^2(2t)}{\cos(2t)}}
v_{1}=-\int \frac{\sin^2(2t)}{\cos(2t)} \, dx
v_{1}=-\int \frac{{1-\cos^2(2t)}}{\cos(2t)} \, dt
v_1=-\int sec(2t) \, dx+\int \cos(2t) \, dt
v_{1}(t)=-\frac{1}{2}\ln\mid sec(2t)+\tan(2t)\mid+\frac{1}{2}\sin(2t)
y_{p}^2(t)=v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)
y(t)=y_{h}(t)+y_{p}'(t)+y_{p}^2(t)
=c_{1}\cos(2t)+c_{2}\sin(2t)+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)-\frac{1}{5}e^t
is our general answer.
IVP solution:
y(0)=0=c_{1}-y_{p}(0)=c_{1}-\frac{1}{5}\Rightarrow c_{1}=\frac{1}{5}
skipping some differentiation: y'(0)=2c_{2}+y_{p}'(0)=2c_{2}+v_{1}'(0)+2v_{2}(0)-\frac{1}{5}=\frac{4}{5}\Rightarrow c_{2}=1
y(t)=\frac{1}{5}\cos(2t)+\sin(2t)-\frac{1}{5}e^t+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)
#end of lecture 9 #start of lecture 10
Variation of parameters
last lec we did some variation of parameters
ay''+by'+cy=f(t)
y_{h}(t)=c_{1}y_{1}(t)+c_{2}y_{2}(t)
y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)
y_{1}v_{1}'+y_{2}v_{2}'=0
y_{1}v_{1}'+y_{2}'v_{2}'=\frac{b}{a}
or f/a? is the system of equations we will need to solve. You can also memorize a formula but peter likes remembering this system of equations and moving on from there. #ex #variation_of_parameters
y''-2y'+y=e^t\ln(t)+2\cos(t)
i) y_{h}(t)=?
r^2-2r+1=0
r_{1,2}=1
y_{h}(t)=c_{1}e^t+c_{2}te^t
2) y_{p}(t)=?
y''-2y'+y=2\cos (t)
y_{p}''=A\cos(t)+B\sin(t)
is our first guess. but it does not solve the homogenous eq.
y_{p}'=-\sin(t)
(obtained by using method of undetermined coefficients, computation not shown.)
y''-2y'+y=e^t\ln(t)
cant use undetermined coefficients, use variation of parameters
y''_{p}(t)=v_{1}y_{1}+v_{2}y_{2}
=v_{1}e^t+v_{2}te^t
compute v1 and v2, using the linear system:
eq1) e^t+v_{1}'+te^tv_{2}'=0
eq2) e^tv_{1}'+(te^t+e^t){v_{2}'}=e^t{\ln t}
subtract eq1 from eq2 v_{2}'=\ln(t)
v_{2}(t)=\int \ln(t) \, dt
integrate by parts
=t\ln(t)-\int t\frac{1}{t} \, dt
=t\ln(t)-t
no constant of integration.
compute v_{1}
now:
v_{1}'=-tv_{2}'
=-t\ln t
integrate to get v_1:
v_{1}=-\int t\ln t \, dt
integrate by parts (btw integration by parts will be the most important integration technique in this course):
v_{1}=-\frac{1}{2}(t^2\ln t)-\int t^2\frac{1}{t} \, dt
=-\frac{1}{2}\left( t^2\ln t-\frac{t^2}{2} \right)=-\frac{1}{2}t^2\ln t+\frac{1}{4}t^2
y_{p}''(t)=(\frac{1}{2}t^2\ln t+\frac{1}{4}t^2)e^t+(t\ln t-t)te^t
y_{p}(t)=-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t
general solution is produced by adding the homogenous eq with y_{p}(t)
general:
y(t)=c_{1}e^t+c_{2}te^t+y_{p}(t)