MATH201/content/Fourier Series (lec 28-29).md

13 KiB

#fourier Remember the heat flow equation? We obtained that it's solution could be expressed in the form:

\sum_{n=1}^\infty c_{n}\sin\left( \frac{n\pi x}{L} \right)\quad\text{for}\quad0\leq x\leq L

But what is c_{n}? They are the coefficients of a Fourier transform. We want to develop a way to compute them. Let's derive how to compute the coefficients of a Fourier transform. (feel free to skip to the end) f(x)=\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right) where L is length of the rod

This is a Fourier series: it's a more general form of what we have above. f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right) x \in [-L,L] It converges to f(x) almost everywhere (convergence will be discussed below) Has a lot of benefits over Taylor series. f(x) doesn't have to be infinitely differentiable (analytic) f(x) can even have jump discontinuities Let's assume the equation is true when x \in [-L,L] Integrate both sides, it will tell us the DC offset: \int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L (\text{put summation here}) \, dx \int _{-L}^L \cos\left( \frac{n\pi x}{L} \right) \, dx=\frac{L}{n\pi}\sin\left( \frac{n\pi x}{L} \right)|_{-L}^L=0 same for \int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\, dx=0 (it equals 0) so \int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L0 \, dx \int _{-L} ^L f(x) \, dx=a_{0}L a_{0}=\frac{1}{L}\int _{-L}^{L} f(x) \, dx Now let's multiply both sides by \cos\left( \frac{m\pi x}{L} \right) and integrate both sides, this will tell us the \cos components: \int _{-L}^L f(x)\cos\left( \frac{m\pi x}{L} \right)\, dx=\frac{a_{0}}{2}\cancelto{ 0 }{ \int _{-L}^L \cos\left( \frac{m\pi x}{L} \right) \, dx }+\sum_{n=1}^\infty\left( a_{n}\int _{-L}^L\cos\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right) \, dx +b_{n}\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right)\right) \, dx use trig identities (will be provided on exam): \cos(\alpha)\cos(\beta)=\frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta)) \sin(\alpha)\cos(\beta)=\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta)) \sin(\alpha)\sin(\beta)=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta)) \int _{-L}^L \cos \frac{n\pi x}{L}\cos \frac{m\pi x}{L}\, dx=\frac{1}{2}(\int _{-L}^L \left( \cos(\frac{(n-m)\pi x}{L} )+\cancelto{ 0 }{ \cos(\frac{(n+m)\pi x}{L} })\right)dx = \begin{cases}0 & n\ne m \\L & n=m\end{cases} \int _{-L}^L \sin \frac{n\pi x}{L}\cos \frac{m\pi x}{L} \, dx=\int _{-L}^L \text{odd}\, dx=0 so: \int _{-L} ^L f(x)\cos\left( \frac{m\pi x}{L} \right)\, dx=a_{m}L Similarly can be done for when multiplying both sides by \sin\left( \frac{m\pi x}{L} \right) and integrating both sides to find the \sin coefficients: \int _{-L}^L f(x)\sin\left( \frac{m\pi x}{L} \right)\, dx=\frac{a_{0}}{2}\cancelto{ 0 }{ \int _{-L}^L \sin\left( \frac{m\pi x}{L} \right) \, dx }+\sum_{n=1}^\infty\left( a_{n}\cancelto{ \text{odd} }{ \int _{-L}^L\cos\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right) } \, dx +b_{n}\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right)\right) \, dx \int _{-L} ^L \sin\left( \frac{n\pi x}{L} \right)\sin\left( \frac{m\pi x}{L} \right) \, dx=\frac{1}{2}\int_{-L}^L \cos\left(\frac{(n-m)\pi x}{L} \right)-\cos\left( \frac{(n+m)\pi x}{L} \right)dx =\begin{cases}0, & n\ne m \\L, & n=m\end{cases} so: \int _{-L} ^L f(x)\sin\left( \frac{m\pi x}{L} \right)\, dx=b_{m}L In conclusion:

a_{m}=\frac{1}{L}\int _{-L}^L f(x)\cos \frac{m\pi x}{L} \, dx \quad\text{valid for all }m=0,1,2,\dots
b_{m}=\frac{1}{L}\int _{-L}^L f(x)\sin \frac{m\pi x}{L} \, dx=b_{m} \quad m=1,2,\dots

Now we know how to compute the coefficients for Fourier series!

properties: for functions f, g, If \int _{-L}^Lf(x)g(x) \, dx=\begin{cases}0 & f\ne g \\L & f=g \end{cases} then f, g are orthogonal the Fourier expansion is called an ortho normal expansion, Taylor is not orthonormal. #end of lec 28 #start of lec 29 Last lecture we derived how to find the coefficients in a Fourier series. f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right) x \in [-L,L]

1st convergence theorem:

If f and f' are piecewise continuous on [-L,L], then the Fourier series converges to: \frac{1}{2}(f(x^-)+f(x^+)) for all x \in (-L,L) and on x=\pm L the Fourier series converges to \frac{1}{2}(f(-L^+)+f(L^-)) draw Recall the definition of piecewise continuous: f(t) is piecewise continuous on an interval I if f(t) is continuous on I, except possibly at a finite number of points of jump discontinuity (horizontal asymptotes not allowed).

2nd Convergence theorem (uniform convergence):

If f(x) is continuous on (-\infty,\infty) and 2L periodic and if f' is piecewise continuous on [-L,L], then its Fourier series converges to f(x) everywhere (i.e., the Fourier series converges uniformly). draw #ex #fourier Let's compute the Fourier transform of:

f(x)=\begin{cases}1, & -\pi\leq x\leq 0 \\x, & 0<x\leq \pi\end{cases}

L here is \pi clearly. Let's find the coefficients a_{n} and b_{n} Use the formula we derived earlier: a_{n}=\frac{1}{\pi}\left( \int _{-\pi}^0 1\cos\left( \frac{n\pi x}{\pi} \right)\, dx +\int _{0}^\pi x\cos(nx)\, dx\right) Using integration by parts (for the second integral): =\frac{1}{\pi}\left( \frac{1}{n}\cancelto{ 0 }{ \sin(nx) |_{-\pi}^0} + \frac{1}{n}x\cancelto{ 0 }{ \sin(nx) |_{0}^\pi}-\frac{1}{n}\int _{0}^\pi \sin(nx) \, dx \right) a_{n}=\frac{1}{n^2\pi}(\cos(nx)|_{0}^\pi)=\frac{1}{n^2\pi}(\underbrace{ \cos(n\pi) }_{ (-1)^n }-1) a_{n}=\frac{1}{n^2\pi}((-1)^n-1)\quad n=1,2,\dots Now let's find b_{n} b_{n}=\frac{1}{\pi}\left( \int _{-\pi}^0\sin(nx) \, dx+\int _{0}^\pi x\sin(nx) \, dx \right) =\frac{1}{\pi}[ \frac{-1}{n}\underbrace{ \cos(nx)|_{-\pi}^0 }_{ 1-(-1)^n }-\frac{1}{n}( \underbrace{ x\cos(nx)|_{0}^\pi }_{ \pi(-1)^n-0 }-\underbrace{ \int _{0}^\pi \cos(nx)\, dx }_{ 0 } ) ] b_{n}=\frac{1}{n\pi}((-1)^n-1-\pi(-1)^n) b_{n}=\frac{1}{n\pi}((-1)^n(1-\pi)-1) \quad n=1,2,\dots we find that

a_{2n}=0 \qquad n=1,2,3,\dots
a_{2k-1}=-\frac{2}{n^2\pi} \qquad k=1,2,3\dots

what about when n=0? a_{0}=\frac{1}{\pi}\left( \int _{-\pi}^0 \, dx+\int _{0}^\pi x \, dx \right) a_{0}=\frac{1}{\pi}\left( x|_{-\pi}^0+\frac{x^2}{2}|_{0}^\pi \right) a_{0}=\frac{1}{\pi}\left( 0+\pi+\frac{\pi^2}{2} \right)

a_{0}=\frac{\pi}{2}+1

#ex Let's compute the Fourier transform of:

f(x)=x \qquad -\pi\leq x\leq \pi

We have to take a windowed form of f to make this possible, L=\pi At the left and right edge of the interval, the Fourier series is equal to 0. (1st convergence theorem.) Find the coefficients: a_{n}=\frac{1}{\pi}\int _{-\pi}^\pi x\cos(nx) \, dx=0

a_{n}=0

Why is it zero? because the integrand is an odd function. (odd times even is odd.) and because we are integrating from -\pi to \pi (a symmetric interval) definition of odd: f(x)=-f(-x) definition of even: f(x)=f(-x) odd times even is odd. odd times odd is even. even times even is even. huge exam time saving technique. Find b_{n}: b_{n}=\frac{1}{\pi}\int _{-\pi}^\pi x\sin(nx) \, dx=\frac{2}{\pi}\int _{0}^\pi x\sin(nx) \, dx <- that's even, don't be a silly goose and say it's 0 Using integration by parts: b_{n}=\frac{2}{\pi}\left( x\left( -\frac{1}{n}\cos(nx)|_{0}^\pi \right)-\int_{0}^\pi -\frac{1}{n}\cos(nx) \, dx \right) b_{n}=\frac{2}{\pi}\left( -\frac{\pi}{n}(-1)^n+\frac{1}{n^2}\cancelto{ 0 }{ \sin(nx)|_{0}^\pi } \right)

b_{n}=\frac{2}{n}(-1)^{n+1}

another take away: if f is odd, the \cos terms are 0 if f is even, the \sin terms are 0.

if f is only defined between 0 and L: you can create an odd extension: \bar{f}(x)=\begin{cases}f(x) & 0\leq x\leq L \\-f(-x), & -L\leq x<0 & & \end{cases} this will contain only \sin terms. You also have a choice to extend it as an even function, symmetrically across the y axis. \bar{f}(x)=\begin{cases}f(x) & 0\leq x\leq L \\f(-x), & -L\leq x<0 & & \end{cases} This will contain only \cos terms. #end of lec 29 #start of lec 30 From last lecture: f(x) is defined on [0,L] odd extension: \bar{f}(x)=\begin{cases}f(x), & 0\leq x\leq L \\-f(-x,) & -L\leq x<0\end{cases} and the a coefficients (\cos terms) are zero. not only that, but the b coefficients are: b_{n}=\frac{1}{L}\int _{-L}^L\bar{f}(x) \sin\left( \frac{n\pi x}{L} \right) \, dx

b_{n}=\frac{2}{L}\int _{0}^L f(x)\sin\left( \frac{n\pi x}{L} \right)\, dx

and \bar{f}(x) is:

\bar{f}(x)=\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right)

"How about that, this is called a Fourier sine series." For even extension: \bar{f}(x)=\begin{cases}f(x), & 0\leq x\leq L \\f(-x,) & -L\leq x<0\end{cases} and the b coefficients (\sin terms) are zero. not only that but the a coefficients are: a_{n}=\frac{1}{L}\int _{-L}^L\bar{f}(x) \cos\left( \frac{n\pi x}{L} \right) \, dx

a_{n}=\frac{2}{L}\int _{0}^L f(x)\cos\left( \frac{n\pi x}{L} \right)\, dx

and \bar{f} is:

\bar{f}(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty a_{n}\cos\left( \frac{n\pi x}{L} \right)

Remember that \sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right) was the expansion of the eigen value function from the heat equation? then \frac{a_{0}}{2}+\sum_{n=1}^\infty a_{n}\cos\left( \frac{n\pi x}{L} \right) is also an expansion of some related eigen value function. It's interesting to note.

#ex #fourier Fourier sine series for:

f(x)=x^2 \qquad 0\leq x\leq \pi

Well that means we want the odd extension: draw the a_{n} (cosine) terms are zero. the b_{n} terms are: b_{n}=\frac{2}{\pi}\int _{0}^\pi x^2\sin(nx) \, dx =-\frac{2}{n\pi}\left[ x^2\cos(nx)|_{0}^\pi-2\int _{0}^\pi x\cos(nx)\, dx \right] =-\frac{2}{n\pi}\left[ \pi^2(-1)^n-\frac{2}{n}\left( x\cancelto{ 0 }{ \sin(nx) }|_{0}^\pi-\int _{0}^\pi \sin(nx)\, dx \right) \right] b_{n}=-\frac{2}{n\pi}[ \pi^2(-1)^n-\frac{2}{n^2}\underbrace{ \cos(nx)|_{0}^\pi }_{ (-1)^n-1 }]=\frac{2\pi}{n}(-1)^{n+1}+\frac{4}{n^3\pi}((-1)^n-1) for n=1,2,3,\dots Note no n=0 so no division by zero problems here.

#ex #fourier Fourier cosine series of f(x)=\sin(x) for 0\leq x\leq \pi draw b_{n} (sine) terms are all zero obviously, as it's asking for a Fourier cosine series, i.e., we are doing an even extension. a_{n}=\frac{2}{\pi}\int _{0}^\pi \sin(x)\cos(nx)\, dx for n=0,1,2,\dots <-Odd, but not symmetrical bounds. We can't rule out that it's zero.

Don't be a silly goose and try changing the bounds by removing that 2 in the front. If you did, you'd also have to change \sin(x) to \bar{f} which is abs(\sin(x)) and then you're integrating a_{n}=\frac{1}{\pi}\int _{-\pi}^\pi |\sin(x)|\cos(nx)\, dx which is even$\times$even.

Use trig identity: (by the way the identities will be provided in the final exam.) =\frac{2}{\pi} \frac{1}{2}\int _{0}^\pi \left[\sin((1-n)x)+\sin((n+1)x)\right]\, dx Integrating gives you: \frac{1}{\pi}( \frac{-1}{1-n}\underbrace{ \cos((1-n)x)|_{0}^\pi }_{ (-1)^{n+1}-1 } +\frac{-1}{n+1}\underbrace{ \cos((n+1)x)|_{0}^\pi }_{ (-1)^{n+1}-1 }) a_{n}=-\frac{1}{\pi} \frac{1}{n+1}(-1)^{n+1}+\frac{1}{\pi} \frac{1}{n+1}+\frac{1}{\pi} \frac{1}{-(1-n)}(-1)^{n+1}+\frac{1}{\pi} \frac{1}{1-n} a_{n}=-\frac{1}{\pi} \frac{1}{n+1} (-1)^{n+1}+\frac{1}{\pi} \frac{1}{n+1}+\frac{1}{\pi} \frac{1}{n-1}(-1)^{n-1}-\frac{1}{\pi} \frac{1}{n-1} Assuming that n\ne0,1. (note: n=-1 is a non-issue since negative coefficients are never considered when taking a Fourier transform.) So what is a_{0}, a_{1}? a_{0}=\frac{2}{\pi}\int _{0}^\pi \sin(x) \, dx=\frac{4}{\pi} a_{1}=\frac{2}{\pi}\int _{0}^\pi \sin(x)\cos(x) \, dx=\frac{1}{\pi}\int _{0}^\pi \sin(2x)\, dx=0 "zero is a very very special number it took humanity many numbers of years to invent zero" referring to when dividing by 0. Additionally we know that the terms cancel when: a_{2k-1}=0 for k=1,2,\dots a_{2k}=\frac{2}{\pi} \frac{1}{2k+1}-\frac{2}{\pi} \frac{1}{2k-1} for k=1,2,\dots then:

\bar{f}(x)=\frac{2}{\pi}+\frac{2}{\pi}\sum_{k=1}^\infty\left( \frac{1}{2k+1}-\frac{1}{2k-1} \right)\cos(2k\pi x)

Even with 10 terms, we get a pretty good approximation: fouriercosineofsin.png We have prepared ourselves now, now we start solving PDE's. He's encouraging us to attend the lectures in these last two weeks. He's making it sound like PDE's are hard.