MATH201/public/lec-4.html

546 lines
11 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="two new equations
Linear coefficients equations
$$(a_{1}x&#43;b_{1}y&#43;c_{1})dx&#43;(a_{2}x&#43;b_{2}y&#43;c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$
imagine $c_{1},c_{2}=0$ It becomes a homogenous equation!
so can we make them 0?
let $x=u&#43;k$
$y=v&#43;l$
where $k,l$ are constants …">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="default">
<link rel="manifest" href="./manifest.json"><meta property="og:title" content="" />
<meta property="og:description" content="two new equations Linear coefficients equations $$(a_{1}x&#43;b_{1}y&#43;c_{1})dx&#43;(a_{2}x&#43;b_{2}y&#43;c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$ imagine $c_{1},c_{2}=0$ It becomes a homogenous equation!
so can we make them 0? let $x=u&#43;k$ $y=v&#43;l$ where $k,l$ are constants $(a_{1}u&#43;b_{1}vK&#43;\underbrace{\cancel{ c_{1}&#43;a_{1}k&#43;b_{1}l } }_{ 0 })du&#43;(a_{2}u&#43;b_{2}v&#43;\underbrace{ \cancel{ c_{2}&#43;a_{2}k&#43;b_{2}l } }_{ 0 })dv=0$ $a_{1}k&#43;b_{1}l=-c_1$ $a_{2}k&#43;b_{2}l=-c_{2}$ if $\det(a_{1},b_{1},a_{2},b_{2})\ne 0$ turn into homogenous if $\det(\dots)=0 \Rightarrow$ equation of type $\frac{ dy }{ dx }=G(ax&#43;by)$ (also homogenous)
Example #ex #de_LC_type1 $$(-3x&#43;y&#43;6)dx&#43;(x&#43;y&#43;2)dy=0$$ let $x=u&#43;k$ $y=v&#43;l$ $(-3u&#43;v&#43;6-3k&#43;l)du&#43;(u&#43;v&#43;2&#43;k&#43;l)dv=0$ we want $6-3k&#43;l$ and $2&#43;k&#43;l$ to equal 0 so: $-3k&#43;l=-6$ $k&#43;l=-2$ $det(-3,1,1,1)=-4$ //he can call it a dinosaur if he wanted to :D solving gives us: $k=1,l=-3$ so $x=u&#43;1 \quad y=v-3$ $(-3u&#43;v)du&#43;(u&#43;v)dv=0$ //Beutiful1!" />
<meta property="og:type" content="article" />
<meta property="og:url" content="/lec-4.html" />
<meta name="twitter:card" content="summary"/>
<meta name="twitter:title" content=""/>
<meta name="twitter:description" content="two new equations Linear coefficients equations $$(a_{1}x&#43;b_{1}y&#43;c_{1})dx&#43;(a_{2}x&#43;b_{2}y&#43;c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$ imagine $c_{1},c_{2}=0$ It becomes a homogenous equation!
so can we make them 0? let $x=u&#43;k$ $y=v&#43;l$ where $k,l$ are constants $(a_{1}u&#43;b_{1}vK&#43;\underbrace{\cancel{ c_{1}&#43;a_{1}k&#43;b_{1}l } }_{ 0 })du&#43;(a_{2}u&#43;b_{2}v&#43;\underbrace{ \cancel{ c_{2}&#43;a_{2}k&#43;b_{2}l } }_{ 0 })dv=0$ $a_{1}k&#43;b_{1}l=-c_1$ $a_{2}k&#43;b_{2}l=-c_{2}$ if $\det(a_{1},b_{1},a_{2},b_{2})\ne 0$ turn into homogenous if $\det(\dots)=0 \Rightarrow$ equation of type $\frac{ dy }{ dx }=G(ax&#43;by)$ (also homogenous)
Example #ex #de_LC_type1 $$(-3x&#43;y&#43;6)dx&#43;(x&#43;y&#43;2)dy=0$$ let $x=u&#43;k$ $y=v&#43;l$ $(-3u&#43;v&#43;6-3k&#43;l)du&#43;(u&#43;v&#43;2&#43;k&#43;l)dv=0$ we want $6-3k&#43;l$ and $2&#43;k&#43;l$ to equal 0 so: $-3k&#43;l=-6$ $k&#43;l=-2$ $det(-3,1,1,1)=-4$ //he can call it a dinosaur if he wanted to :D solving gives us: $k=1,l=-3$ so $x=u&#43;1 \quad y=v-3$ $(-3u&#43;v)du&#43;(u&#43;v)dv=0$ //Beutiful1!"/>
<title>(lec 4) - My New Hugo Site</title>
<link rel="stylesheet" href="./css/main.min.203106d73d4370d04c60441691746dd8e021e38bbbc83f65f636dc8ae886a9f3.css" />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="./js/main.min.2dd2f7073384163751d1886bcb921097bc2af8ec60cb37deebf49f61a0eca5c3.js" integrity="sha256-LdL3BzOEFjdR0Yhry5IQl7wq&#43;Oxgyzfe6/SfYaDspcM="></script>
</head>
<body>
<style>
search-menu {
display: block;
}
#search {
height: 100%;
width: 0;
position: fixed;
background: var(--background-search);
z-index: 1;
top: 0;
left: 0;
border-right: 1px solid var(--separator-color);
overflow-x: hidden;
overflow-y: auto;
opacity: 0;
-ms-overflow-style: none;
scrollbar-width: none;
}
#search::-webkit-scrollbar { display: none; }
#search-header {
padding: 12px;
position: fixed;
padding-left: 12px;
padding-right: 12px;
background: var(--background-search);
width: 250px;
opacity: 1;
height: 50px;
z-index: 2;
border-bottom: 1px solid var(--separator-color);
}
#search .input-container {
position: relative
}
#search-input {
width: 100%;
height: 24px;
border: 1px solid var(--separator-color);
border-radius: 4px;
padding-left: 16px;
background-color: white;
display: inline-block;
}
#search-input:focus {
border: 1px solid var(--search-field-focused-color);
}
#search-header .input-container .search-icon {
position: absolute;
top: 6px;
left: 8px;
fill: darkGray;
}
#search-results img {
width: 122px;
height: 76px;
border: 1px solid var(--separator-color);
object-fit: cover;
}
#search-results {
margin-top: 50px;
overflow: auto;
height: 100%;
}
#search-results a {
width: 100%;
padding-left: 25px;
padding-right: 25px;
padding-top: 12px;
padding-bottom: 12px;
display: inline-block;
color: var(--text-base-color);
border-bottom: 1px solid var(--separator-color);
border-left: 6px solid var(--background-search);
}
#search-results a:first-child:hover, a:first-child:focus, .selected {
outline: 0;
background-color: var(--note-table-cell-selected-color);
border-left: 6px solid var(--note-table-cell-ribbon-color) !important;
}
#search-results li { text-indent: 0; }
#search-results li:before,
#search-results h1:before,
#search-results h2:before,
#search-results h3:before,
#search-results h4:before,
#search-results h5:before,
#search-results h6:before {
content: "";
visibility: hidden;
display: none;
}
</style>
<search-menu id="search" data-turbolinks-permanent>
<header id="search-header">
<div class="input-container">
<svg aria-hidden="true" style="" class="search-icon" width="12" height="12" viewBox="0 0 18 18">
<path d="M18 16.5l-5.14-5.18h-.35a7 7 0 10-1.19 1.19v.35L16.5 18l1.5-1.5zM12 7A5 5 0 112 7a5 5 0 0110 0z">
</path>
</svg>
<input type="search" autocomplete="off" id="search-input" onkeyup="performSearch()" tabindex="0" placeholder="Search note">
</div>
</header>
<ul id="search-results"></ul>
</search-menu>
<script>
</script>
<style>
#toolbar {
position: fixed;
top: 0;
right: 0;
width: 60px;
height: 100%;
display: flex;
flex-direction: column;
justify-content: flex-start;
align-items: center;
transition: 1s;
opacity: 0.5;
padding: 18px 0px 18px 0px;
}
#toolbar:hover {
opacity: 1;
}
#close-nav-icon {
display: none;
}
</style>
<aside id="toolbar">
<span style="cursor:pointer" id="open-nav-icon" onclick="handleNavVisibility()">
<svg width="18" height="18" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle fill="none" stroke="var(--text-base-color)" stroke-width="1.1" cx="9" cy="9" r="7"></circle><path fill="none" stroke="var(--text-base-color)" stroke-width="1.1" d="M14,14 L18,18 L14,14 Z"></path></svg>
</span>
<span onclick="imageMode()" style="cursor:pointer;margin-top:16px;">
<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle cx="16.1" cy="6.1" r="1.1"></circle><rect fill="none" stroke="var(--text-base-color" x=".5" y="2.5" width="19" height="15"></rect><polyline fill="none" stroke="var(--text-base-color" stroke-width="1.01" points="4,13 8,9 13,14"></polyline><polyline fill="none" stroke="var(--text-base-color)" stroke-width="1.01" points="11,12 12.5,10.5 16,14"></polyline></svg>
</span>
</aside>
<main id="main">
<div id="note-wrapper" class="note-wrapper">
<h1 id="two-new-equations">two new equations</h1>
<h2 id="linear-coefficients-equations">Linear coefficients equations</h2>
<p>$$(a_{1}x+b_{1}y+c_{1})dx+(a_{2}x+b_{2}y+c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$
imagine $c_{1},c_{2}=0$ It becomes a homogenous equation!</p>
<p>so can we make them 0?
let $x=u+k$
$y=v+l$
where $k,l$ are constants
$(a_{1}u+b_{1}vK+\underbrace{\cancel{ c_{1}+a_{1}k+b_{1}l } }_{ 0 })du+(a_{2}u+b_{2}v+\underbrace{ \cancel{ c_{2}+a_{2}k+b_{2}l } }_{ 0 })dv=0$
$a_{1}k+b_{1}l=-c_1$
$a_{2}k+b_{2}l=-c_{2}$
if $\det(a_{1},b_{1},a_{2},b_{2})\ne 0$ turn into homogenous
if $\det(\dots)=0 \Rightarrow$ equation of type $\frac{ dy }{ dx }=G(ax+by)$ (also homogenous)</p>
<h3 id="example">Example</h3>
<p><a class="hashtag" onclick="focusTag(this)">ex</a> <a class="hashtag" onclick="focusTag(this)">de_LC_type1</a>
$$(-3x+y+6)dx+(x+y+2)dy=0$$
let $x=u+k$
$y=v+l$
$(-3u+v+6-3k+l)du+(u+v+2+k+l)dv=0$
we want $6-3k+l$ and $2+k+l$ to equal 0
so:
$-3k+l=-6$
$k+l=-2$
$det(-3,1,1,1)=-4$ //he can call it a dinosaur if he wanted to :D
solving gives us:
$k=1,l=-3$
so $x=u+1 \quad y=v-3$
$(-3u+v)du+(u+v)dv=0$ //Beutiful1! it&rsquo;s homogenous now
$\frac{ dv }{ du }=\frac{{3u-v}}{u+v}=\frac{{3-\frac{v}{u}}}{1+\frac{v}{u}}$
$\frac{v}{u}=w \quad v=uw \quad \frac{ dv }{ du }=w+u\frac{ dw }{ du }$
$w+u\frac{ dw }{ du }=\frac{{3-w}}{1+w}$ This is the equation we have to solve
$u\frac{ dw }{ du }=\frac{{3-2w-w^2}}{1+w}$
$-\frac{{w+1}}{w^2+2w-3}dw=\frac{du}{u}$
$\int-\frac{{w+1}}{w^2+2w-3}dw=\int\frac{du}{u}$
let $z=w^2+2w-3$
$dz=2(w+1)dw$
$\frac{1}{2}\int \frac{dz}{z}=\ln\mid u\mid^{-1}$
$\ln\mid z\mid^{1/2}-\ln\mid u\mid^{-1}=C$
$\ln(\mid z\mid^{1/2}\mid u\mid)=C$
$\mid z\mid^{1/2}u=e^C$
$\mid z\mid u^2=e^{2C}$
$zu^2=A$
$\left( \left( \frac{v}{u} \right)^2+\frac{2v}{u}-3 \right)u^2=A$
remember $u=x-1 \quad v=y+3$
$$\left( \left( \frac{{y+3}}{x-1} \right)^2+\frac{2(y+3)}{x-1}-3 \right)(x-1)^2=A$$
you can &ldquo;simplify&rdquo; it to: $(y+3)^2+2(y+3)(x-1)-3(x-1)^2=A$</p>
<hr>
<h2 id="exact-equations">Exact equations</h2>
<p>two variable equations
$dF=\frac{ \partial F }{ \partial x }dx+\frac{ \partial F }{ \partial y }dy=0$ suppose it equals to zero (as shown in the equation) you get a horizontal plane (a constant)
so $F(x,y)=C$
the solution to these exact equations is given by $F()$ but how do we get F from the derivatives?
Equation of the form: $$M(x,y)dx=N(x,y)dy=0$$
is called exact if $M(x,y)=\frac{ \partial F }{ \partial x }$ and $N(x,y)=\frac{ \partial F }{ \partial y }$ for some function $F(x,y)$
then differentiating we get:
$\frac{ \partial M }{ \partial y }=\frac{ \partial^{2} F }{ \partial y\partial x }$
$\frac{ \partial N }{ \partial x }=\frac{ \partial^{2} F }{ \partial x\partial y }$ Order of going in x then y vs y then x doesn&rsquo;t matter as it lands you on the same point (idk how this is related yet)
Exact equation$\Rightarrow \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x }$ if it&rsquo;s continuous (?)
also: Exact equation$\Leftarrow \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x }$
Test for exactness:
exact $\iff \frac{ \partial M }{ \partial y }=\frac{ \partial N }{ \partial x }$ (this can be proved, but it wasnt proved in class)
<a class="hashtag" onclick="focusTag(this)">end</a> of lecture 4</p>
<h3>Referenced in</h3>
<ul>
<li>No backlinks found</li>
</ul>
</div>
</main>
<script type="text/javascript">
</script>
</body>
</html>