<!DOCTYPE html>
<html lang="en">

<head>
	<meta charset="utf-8" />
	<meta http-equiv="X-UA-Compatible" content="IE=edge">
	<meta name="viewport" content="width=device-width, initial-scale=1">
	<meta name="description" content="#start of lecture 1
Intro (Newton example):
Newton example where we find the equations to describe a falling object using differential equations (DE&rsquo;s)
We know $F=ma$
$F=m\frac{dv}{dt}=mg-kv$ &lt;- we account for air resistance here. We can approximate  the force of air resistance is …">
	<meta name="apple-mobile-web-app-capable" content="yes">
	<meta name="mobile-web-app-capable" content="yes">
	<meta name="apple-mobile-web-app-status-bar-style" content="default">
	
	
	<link rel="manifest" href="./manifest.json"><meta property="og:title" content="" />
<meta property="og:description" content="#start of lecture 1
Intro (Newton example): Newton example where we find the equations to describe a falling object using differential equations (DE&rsquo;s) We know $F=ma$ $F=m\frac{dv}{dt}=mg-kv$ &lt;- we account for air resistance here. We can approximate the force of air resistance is proportional to the speed times a constant. We can rearrange and solve it as it is a separable DE: $\frac{dv}{mg-kv}=\frac{dt}{m}$ integrating both sides: $\int \frac{dv}{mg-kv}=\frac{t}{m}&#43;C$ let $u=mg-kv \quad du=-kdv$ $\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}&#43;C$ Very cool, but I want the velocity as a function of time, isolate v $\ln\mid mg-kv\mid=-\frac{kt}{m}&#43;C$ $\mid mg-kv\mid=e^{\frac{-kt}{m}&#43;C}=e^{\frac{-kt}{m}}e^C$ $e^C$ is a &#43; constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be &#43; or - $mg-kv=Ae^{\frac{-kt}{m}}$ so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$" />
<meta property="og:type" content="article" />
<meta property="og:url" content="/seperable-de-lec-1.html" />

<meta name="twitter:card" content="summary"/>
<meta name="twitter:title" content=""/>
<meta name="twitter:description" content="#start of lecture 1
Intro (Newton example): Newton example where we find the equations to describe a falling object using differential equations (DE&rsquo;s) We know $F=ma$ $F=m\frac{dv}{dt}=mg-kv$ &lt;- we account for air resistance here. We can approximate the force of air resistance is proportional to the speed times a constant. We can rearrange and solve it as it is a separable DE: $\frac{dv}{mg-kv}=\frac{dt}{m}$ integrating both sides: $\int \frac{dv}{mg-kv}=\frac{t}{m}&#43;C$ let $u=mg-kv \quad du=-kdv$ $\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}&#43;C$ Very cool, but I want the velocity as a function of time, isolate v $\ln\mid mg-kv\mid=-\frac{kt}{m}&#43;C$ $\mid mg-kv\mid=e^{\frac{-kt}{m}&#43;C}=e^{\frac{-kt}{m}}e^C$ $e^C$ is a &#43; constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be &#43; or - $mg-kv=Ae^{\frac{-kt}{m}}$ so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$"/>

	
		
	
	
	<title>Seperable DE (lec 1) - My New Hugo Site</title>
	
	
	
	
	
	
	
	
	
	<link rel="stylesheet" href="./css/main.min.203106d73d4370d04c60441691746dd8e021e38bbbc83f65f636dc8ae886a9f3.css" />
	<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	<script src="./js/main.min.2dd2f7073384163751d1886bcb921097bc2af8ec60cb37deebf49f61a0eca5c3.js" integrity="sha256-LdL3BzOEFjdR0Yhry5IQl7wq&#43;Oxgyzfe6/SfYaDspcM="></script>
	


</head>

<body>

	
<style>
search-menu {
	display: block;
}

#search { 
	height: 100%;
	width: 0;
	position: fixed;
	background: var(--background-search);
	z-index: 1;
	top: 0;
	left: 0;
	border-right: 1px solid var(--separator-color);
	overflow-x: hidden;
	overflow-y: auto;
	opacity: 0;
	
	-ms-overflow-style: none;   
	scrollbar-width: none;   
}      
	
#search::-webkit-scrollbar { display: none; }

#search-header {
	padding: 12px;
	position: fixed;
	padding-left: 12px;
	padding-right: 12px;
	background: var(--background-search);
	width: 250px;
	opacity: 1;
	height: 50px;
	z-index: 2;
	border-bottom: 1px solid var(--separator-color);
}

#search .input-container {
	position: relative
}

#search-input { 
  width: 100%;
  height: 24px;
  border: 1px solid var(--separator-color);
  border-radius: 4px;
  padding-left: 16px;
  background-color: white;
  display: inline-block;
}

#search-input:focus {
	border: 1px solid var(--search-field-focused-color);
}

#search-header .input-container .search-icon {
	position: absolute;
	top: 6px;
	left: 8px;
	fill: darkGray;
}

#search-results img {
	width: 122px;
	height: 76px;
	border: 1px solid var(--separator-color);
	object-fit: cover;
}

#search-results { 
	margin-top: 50px; 
	overflow: auto;
	height: 100%;
}

#search-results a {
	width: 100%;
	padding-left: 25px;
	padding-right: 25px;
	padding-top: 12px;
	padding-bottom: 12px;
	display: inline-block;
	
	color: var(--text-base-color);
	border-bottom: 1px solid var(--separator-color);
	border-left: 6px solid var(--background-search);

}

#search-results a:first-child:hover, a:first-child:focus, .selected { 
	outline: 0; 
	background-color: var(--note-table-cell-selected-color);
	border-left: 6px solid var(--note-table-cell-ribbon-color) !important;
}


#search-results li { text-indent: 0; }
#search-results li:before,
#search-results h1:before,
#search-results h2:before,
#search-results h3:before,
#search-results h4:before,
#search-results h5:before,
#search-results h6:before {
	content: "";
	visibility: hidden;
	display: none;
}
</style>	


<search-menu id="search" data-turbolinks-permanent>
	   <header id="search-header">
		 <div class="input-container">
			 <svg aria-hidden="true" style="" class="search-icon" width="12" height="12" viewBox="0 0 18 18">
			<path d="M18 16.5l-5.14-5.18h-.35a7 7 0 10-1.19 1.19v.35L16.5 18l1.5-1.5zM12 7A5 5 0 112 7a5 5 0 0110 0z">
			</path>
			 </svg>
			 
			 <input type="search" autocomplete="off" id="search-input" onkeyup="performSearch()" tabindex="0" placeholder="Search note">
			 
			
			 
		 </div>
	   </header>
	   
	   <ul id="search-results"></ul>
</search-menu>
	<script>
</script>

<style>
#toolbar {
	position: fixed;
	top: 0;
	right: 0;
	
	width: 60px;
	height: 100%;

	display: flex;
	flex-direction: column;
	justify-content: flex-start;
	align-items: center;
	
	transition: 1s;
	opacity: 0.5;
	
	padding: 18px 0px 18px 0px;
}

#toolbar:hover {
	opacity: 1;
}

#close-nav-icon {
	display: none;
}

</style>

<aside id="toolbar">
	<span style="cursor:pointer" id="open-nav-icon" onclick="handleNavVisibility()">
	<svg width="18" height="18" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle fill="none" stroke="var(--text-base-color)" stroke-width="1.1" cx="9" cy="9" r="7"></circle><path fill="none" stroke="var(--text-base-color)" stroke-width="1.1" d="M14,14 L18,18 L14,14 Z"></path></svg>
	</span>
	
	<span onclick="imageMode()" style="cursor:pointer;margin-top:16px;">
		<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle cx="16.1" cy="6.1" r="1.1"></circle><rect fill="none" stroke="var(--text-base-color" x=".5" y="2.5" width="19" height="15"></rect><polyline fill="none" stroke="var(--text-base-color" stroke-width="1.01" points="4,13 8,9 13,14"></polyline><polyline fill="none" stroke="var(--text-base-color)" stroke-width="1.01" points="11,12 12.5,10.5 16,14"></polyline></svg>
	</span>
</aside>
	


































































































































	
	<main id="main">
		
		<div id="note-wrapper" class="note-wrapper">
			




	


		
			
			
				
 









































 
 
 
 
 





<p>#start of lecture 1</p>
<h3 id="intro-newton-example">Intro (Newton example):</h3>
<p>Newton example where we find the equations to describe a falling object using differential equations (DE&rsquo;s)
We know $F=ma$
$F=m\frac{dv}{dt}=mg-kv$ <svg width="11px" height="10px" viewBox="0 0 11 10" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g id="left-arrow" transform="translate(5.500000, 5.000000) scale(-1, 1) translate(-5.500000, -5.000000) "> <path d="M1.77635684e-14,5 L9,5" id="rod" stroke="#000000" stroke-width="2"></path> <path d="M11,5 L6,0.5 L6,9.5 L11,5 Z" id="point" fill="#000000"></path></g></svg> we account for air resistance here. We can approximate  the force of air resistance is proportional to the speed times a constant.
We can rearrange and solve it as it is a separable DE:
$\frac{dv}{mg-kv}=\frac{dt}{m}$
integrating both sides:
$\int \frac{dv}{mg-kv}=\frac{t}{m}+C$
let $u=mg-kv \quad du=-kdv$
$\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}+C$
Very cool, but I want the velocity as a function of time, isolate v
$\ln\mid mg-kv\mid=-\frac{kt}{m}+C$
$\mid mg-kv\mid=e^{\frac{-kt}{m}+C}=e^{\frac{-kt}{m}}e^C$
$e^C$ is a + constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be + or -
$mg-kv=Ae^{\frac{-kt}{m}}$
so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$</p>
<h3 id="separable-de">Separable DE:</h3>
<pre><code>$\frac{dy}{dx}=f(y)g(x) \rightarrow \frac{dy}{f(y)}=g(x)dx\quad where\quad f(y)\ne0$
(I'm calling this &lt;a class=&quot;hashtag&quot; onclick=&quot;focusTag(this)&quot;&gt;de_s_type1)&lt;/a&gt;
</code></pre>
<p>ex: $\frac{dy}{dt}=\frac{1-t^2}{y^2}$
$y^2dy=dt(1-t^2)$
integrating both sides yields:
$\frac{y^3}{3}=t-\frac{t^3}{3}+C$
$y=(3t-t^3+C)^\frac{1}{3}$</p>
<h3 id="initial-value-problem-ivp">Initial value problem (IVP):</h3>
<pre><code>A Differential equation with provided initial conditions.
</code></pre>
<p><a class="hashtag" onclick="focusTag(this)">ex</a>
<a class="hashtag" onclick="focusTag(this)">IVP</a> <a class="hashtag" onclick="focusTag(this)">de_s_type1</a>
ex: $\frac{dy}{dx}=2x\cos^2(y), \quad y(0)=\frac{\pi}{4}$
$\frac{dy}{\cos^2(y)}=2xdx$
integrate both sides yields:
$\int \frac{dy}{\cos^2(y)}=\tan(y)+C=x^2$
plug in $y(0)=\frac{\pi}{4}$
$\tan\left( \frac{\pi}{4} \right)+C=0$
$1+C=0$
$C=-1$
So, the answer is: $y=\arctan(x^2+1)$</p>
<p><a class="hashtag" onclick="focusTag(this)">end</a> of Lecture 1</p>


			  




<h3>Referenced in</h3>

<ul>
	<li>No backlinks found</li>

</ul>



		</div>
	</main>
	
<script type="text/javascript">













</script>

</body>
</html>