# Variation of parameters $ay''+by'+cy=f(t)$ 1) $y_{h}=c_{1}y_{1}(t)+c_{2}y_{2}t$ <- h is homogenous, ie: $f(t)=0$ Lagrange proposed: find a particular solution of $y_{p}$ $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$ <- btw $y_{1}$ and $y_{2}$ are often called a fundamental pair. we put $y_p$ into the equation and make it equal to the RHS. To do so, find the derivatives first: $y'_{p}=v_{1}'y_{1}+v_{1}y_{1}'+v_{2}'y_{2}+v_{2}y_{2}'$ to avoid second derivatives in the equation and problems with uniqueness, Lagrange imposed: 1) $v_{1}'y_{1}+v_{2}'y_{2}=0$ this simplifies our work down the road as well. $y'_{p}=\cancel{ v_{1}'y_{1} }+v_{1}y_{1}'+\cancel{ v_{2}'y_{2} }+v_{2}y_{2}'$ so $y_{p}''=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''$ now we plug into the second order equation: $a(v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}'')+b(v_{1}y_{1}'+v_{2}y_{2}')+c(v_{1}y_{1}+v_{2}y_{2})=f(t)$ $v_{1}(\cancel{ ay_{1}''+ by_{1}' +cy_{1} })+v_{2}(\cancel{ ay_{2}''+ by_{2}'+cy_{2} })+a(v_{1}'y_{1}'+v_{2}'y_{2}')$ Both $y_{1}$ and $y_{2}$ are solutions to the homogenous counterpart. So the first two terms above equal to zero. 2) $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$ $\det \begin{pmatrix}y_{1} & y_{2} \\y_{1}'& y_{2}'\end{pmatrix}$ = Wronskian = $W[y_{1},y_{2}]\ne 0$ by definition $y_1$ and $y_2$ are linearly independent solutions so the above can never be 0! $v_{1}'=\frac{{f(t)y_{2}t}}{aW[y_{1},y_{2}]}$; $v_{2}'=-\frac{{f(t)y_{1}(t)}}{aW[y_{1},y_{2}]}$ <- integrate both sizes to get $v_{1}$ and $v_{2}$. When integrating, you don't need to add a generic constant. #ex #second_order #IVP $y''+4y=2\tan(2t)-e^t \qquad y(0)=0 \qquad y'(0)=\frac{4}{5}$ can we use undetermined coefficients? yes and no find general solution to homogenous counterpart 1) $y''+4y=0$ -> $r^2+4=0$ -> $r_{1,2}=\pm 2i$ $y_{h}(t)=c_{1}\cos(2t)+c_{2}\sin(2t)$ 2) $y''+4y=-e^t$ <- use method of undetermined coefficients $y_{p}^1(t)=Ae^{t}$ $5Ae^t=-e^t$ $A=-\frac{1}{5}$ $y_{p}^1(t)=-\frac{1}{5}e^t$ (ii) $y''+4y=2\tan(2t)$ <- cant use method of undetermined coefficients $y_{p}^2(t)=v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$ plugging in: we get a system of eq: $\cos(2t)v_{1}'+\sin(2t)v_{2}'=0$ $-2\sin(2t)v_{1}'+2\cos(2t)v_{2}'=2\tan(2t)$ > we know these two will give a unique solution. >to solve system of eq multiply each by: >$2\cos(2t)$ >$\sin(2t)$ $2(\sin^2(2t)+\cos^2(2t))v_{2}'=2\tan(2t)\cos(2t)$ $v_{2}'=\sin(2t)$ $v_{2}(t)=-\frac{1}{2}\cos(2t)$ no constant of integration, we want one solution only $v_{1}'=-{\frac{\sin^2(2t)}{\cos(2t)}}$ $v_{1}=-\int \frac{\sin^2(2t)}{\cos(2t)} \, dt$ $v_{1}=-\int \frac{{1-\cos^2(2t)}}{\cos(2t)} \, dt$ $v_1=-\int sec(2t) \, dt+\int \cos(2t) \, dt$ $v_{1}(t)=-\frac{1}{2}\ln\mid sec(2t)+\tan(2t)\mid+\frac{1}{2}\sin(2t)$ $y_{p}^2(t)=v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$ $y(t)=y_{h}(t)+y_{p}^1(t)+y_{p}^2(t)$ =$c_{1}\cos(2t)+c_{2}\sin(2t)+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)-\frac{1}{5}e^t$ is the general answer. IVP solution: $y(0)=0=c_{1}-y_{p}(0)=c_{1}-\frac{1}{5}\Rightarrow c_{1}=\frac{1}{5}$ skipping some differentiation: $y'(0)=2c_{2}+y_{p}'(0)=2c_{2}+v_{1}'(0)+2v_{2}(0)-\frac{1}{5}=\frac{4}{5}\Rightarrow c_{2}=1$ $$y(t)=\frac{1}{5}\cos(2t)+\sin(2t)-\frac{1}{5}e^t+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$$ #end of lecture 9 #start of lecture 10 # Variation of parameters last lec we did some variation of parameters $ay''+by'+cy=f(t)$ 1) $y_{h}(t)=c_{1}y_{1}(t)+c_{2}y_{2}(t)$ 2) $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$ $y_{1}v_{1}'+y_{2}v_{2}'=0$ $y_{1}v_{1}'+y_{2}'v_{2}'=\frac{b}{a}$ or f/a? is the system of equations we will need to solve. You can also memorize a formula but peter likes remembering this system of equations and moving on from there. #ex #variation_of_parameters $$y''-2y'+y=e^t\ln(t)+2\cos(t)$$ i) $y_{h}(t)=?$ $r^2-2r+1=0$ $r_{1,2}=1$ $y_{h}(t)=c_{1}e^t+c_{2}te^t$ 2) $y_{p}(t)=?$ $y''-2y'+y=2\cos (t)$ $y_{p}''=A\cos(t)+B\sin(t)$ is our first guess. but it does not solve the homogenous eq. $y_{p}'=-\sin(t)$ (obtained by using method of undetermined coefficients, computation not shown.) $y''-2y'+y=e^t\ln(t)$ cant use undetermined coefficients, use variation of parameters $y''_{p}(t)=v_{1}y_{1}+v_{2}y_{2}$ $=v_{1}e^t+v_{2}te^t$ compute v1 and v2, using the linear system: eq1) $e^t+v_{1}'+te^tv_{2}'=0$ eq2) $e^tv_{1}'+(te^t+e^t){v_{2}'}=e^t{\ln t}$ subtract eq1 from eq2 $v_{2}'=\ln(t)$ $v_{2}(t)=\int \ln(t) \, dt$ integrate by parts $=t\ln(t)-\int t\frac{1}{t} \, dt$ $=t\ln(t)-t$ no constant of integration. compute $v_{1}$ now: $v_{1}'=-tv_{2}'$ $=-t\ln t$ integrate to get v_1: $v_{1}=-\int t\ln t \, dt$ integrate by parts (btw integration by parts will be the most important integration technique in this course): $v_{1}=-\frac{1}{2}(t^2\ln t)-\int t^2\frac{1}{t} \, dt$ $=-\frac{1}{2}\left( t^2\ln t-\frac{t^2}{2} \right)=-\frac{1}{2}t^2\ln t+\frac{1}{4}t^2$ $y_{p}''(t)=(\frac{1}{2}t^2\ln t+\frac{1}{4}t^2)e^t+(t\ln t-t)te^t$ $y_{p}(t)=-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$ general solution is produced by adding the homogenous eq with $y_{p}(t)$ general: $$y(t)=c_{1}e^t+c_{2}te^t+y_{p}(t)$$