# Laplace transform From now on, LT is short for Laplace Transform What is LT? It's denoted as $\mathcal{L}$ and it's an operator defined as the following: $$\underset{ =F(s) }{ \mathcal{L}\{f(t)\}(s) }:=\int _{0}^\infty e^{-st}f(t) dt=\lim_{ T \to \infty }\int _{0} ^T e^{-st}f(t)\, dt$$ This doesn't look like anything useful, but later on we will learn how it is. Here are some trivial example computations: $\mathcal{L}\{0\}=0$ Look at your bank account, integrate 0 you still get 0 :D $\mathcal{L}\{1\}=\int_{0}^\infty e^{-st} \, dt=-\frac{1}{s}e^{-st}|_{0}^\infty=\frac{1}{s}$ if s>0 $\mathcal{L}\{e^{at}\}$=$\int_{0}^{\infty} e^{at}e^{-st}\, dt=\int_{0}^{\infty}e^{-(s-a)t}dt=\frac{1}{s-a}$ if $s-a>0$ $\mathcal{L}\{\sin bt\}=\int _{0}^{\infty}e^{-st}\sin(bt) \, dt=\frac{b}{s^2+b^2}$ by integration by parts similarly can be done for cos, but we have run out of time. #end of lec 14 #start of lec 15 compute the LT of this funny function: $f(t)=\begin{pmatrix}1, & 0\leq t\leq 1 \\ 2, & 1T : f(t)\leq Me^{\alpha t}$ this is important so that f(t)e^{-st} doesn't go into infinity, this can be proven, but not necessary Theorem: If $f(t)$ is piecewise continuous and of an exponential order $\alpha$ on $[0, \infty)$, then $\mathcal{L}\{f\}$ exists $s>\alpha$ and we are guarenteed that $s>\alpha$ $e^{\alpha t}$ is this of exponential order? Of course, $M=1,\alpha=\alpha$ what about $\sin(t)$? yes, sin is bounded b/w -1 and 1 What about $e^{t^2}$? No, t^2 always outgrows $\alpha t$ eventually. This function does not have a LT. ![[Drawing 2023-10-11 13.21.18.excalidraw]] Theorem if $F(s)$ is a LT then $\lim_{ s \to \infty }F(s)=0$ properties: assume LT of f(t) exists: first property: $\mathcal{L}\{e^{\alpha t}f(t)\}=\int _{0}^\infty e^{\alpha t}e^{-st}\, dt=\int _{0}^\infty e^{-(s-a)t}f(t)\, dt=F(s-a)$ $\mathcal{L}\{e^{\alpha t}\cdot 1\}=\frac{1}{s-\alpha}$ $\mathcal{L}\{e^{\alpha t}\sin(bt)\}=\frac{b}{(s-a)^2+b^2}$ these properties are essential for the midterm. using integration by parts: $\mathcal{L}\{f'(t)\}(s)=\int _{0}^\infty e^{-st}f(t)\, dt=e^{-st}f(t)|_{t=0}^{t\to \infty}+s \underbrace{ \int e^{-st}f(t) \, dt }_{ F(s) }$$=sF(s)-f(0)$ $\mathcal{L}{f''}=s^2F(s)-sf(0)-f'(0))$ using proof by induction (try at home!): $\mathcal{L}\{f^{(m)}\}=s^mF(s)-s^{m-1}f(0)-\dots-f^{m-1}(0)$ trig stuff: $\mathcal{L}\{\sin bt\}=\frac{b}{s^2+b^2}$ $\mathcal{L}\{\cos bt\}=\frac{s}{s^2+b^2}$ $\cos(bt)=\frac{1}{b}(\sin(bt))'$ $\frac{dF}{ds}(s)=\frac{d}{ds}\int _{0 } ^\infty e^{-st}f(t)\, dt=\int _{0} ^\infty f(t) \frac{d}{ds}(e^{-st}) \, dt$ $=-\int _{0} ^\infty e^{-st}tf(t)\, dt$ $-\frac{dF}{ds}=\mathcal{L}\{tf(t)\}$; again we can use induction to prove: $\mathcal{L}\{t''f(t)\}=(-1)^{n} \frac{d^nF}{ds^n}$ $\mathcal{L}\{t 1\}=-(s^-1)^1=s^-2$; $\mathcal{L}\{t^n\}= \frac{n!}{s^{n+1}}$ (can be proven by induction) today covers all midterm material. Yay! #end of lec 15