Remember the heat flow equation? We obtained that it's solution could be expressed in the form: $$\sum_{n=1}^\infty c_{n}\sin\left( \frac{n\pi x}{L} \right)\quad\text{for}\quad0\leq x\leq L$$ But what is $c_{n}$? They are the coefficients of a fourier transform. We want to develop a way to compute them. Let's derive how to compute the coefficients of a fourier transform. (feel free to skip to the end) $f(x)=\sum_{n=1}^\infty b_{n}\sin\left( \frac{n\pi x}{L} \right)$ where L is length of the rod This is a Fourier series, it's a more general form of what we have above: $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right)$ $x \in [-L,L]$ almost everywhere piecewise continuous (?) has a lot of benefits over taylor series. $f(x)$ doesn't have to be infinitely differentiable (analytic) f(x) can even have jump discontinuities lets assume the equation is true when $x \in [-L,L]$ $\int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L (\text{put summation here}) \, dx$ $\int _{-L}^L \cos\left( \frac{n\pi x}{L} \right) \, dx=\frac{L}{n\pi}\sin\left( \frac{n\pi x}{L} \right)|_{-L}^L=0$ same for $\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\, dx=0$ (it equals 0) so $\int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L0 \, dx$ $\int _{-L} ^L f(x) \, dx=\int _{-L}^L \frac{a_{0}}{2} \, dx+\int _{-L}^L0 \, dx$ $a_{0}=\frac{1}{L}\int _{L}^{2?a_{0}L} f(x) \, dx$ $\int _{-L}^L f(x)\cos\left( \frac{m\pi x}{L} \right)\, dx=\frac{a_{0}}{2}\cancelto{ 0 }{ \int _{-L}^L \cos\left( \frac{m\pi x}{L} \right) \, dx }+\sum_{n=1}^\infty\left( a_{n}\int _{-L}^L\cos\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right) \, dx \right)+b_{n}\int _{-L}^L \sin\left( \frac{n\pi x}{L} \right)\cos\left( \frac{m\pi x}{L} \right) \, dx$ use trig identities (will be provided on exam): $\cos(\alpha)\cos(\beta)=\frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$ $\sin(\alpha)\cos(\beta)=\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$ $\sin(\alpha)\sin(\beta)=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$ $\int _{-L}^L \cos \frac{n\pi x}{L}\cos \frac{m\pi x}{L}\, dx=\frac{1}{2}(\int _{-L}^L \left( \cos \frac{(n-m)\pi x}{L} \right) \, dx+\cancelto{ 0 }{ \frac{\cos(n+m)\pi x}{L} }dx$ $= \begin{cases}0 & n\ne m \\L & n=m\end{cases}$ $\int _{-L}^L \sin \frac{n\pi x}{L}\cos \frac{m\pi}{L} \, dx=0;$ $\int _{-L}^L \sin \frac{n\pi x}{L}\cos \frac{m\pi}{L} \, dx=\begin{cases}0 & n\ne m \\L & n=m\end{cases}$ going back, $$a_{m}=\frac{1}{L}\int _{-L}^L f(x)\cos \frac{m\pi x}{L} \, dx \quad\text{valid for all }m=0,1,2,\dots$$ $$b_{m}=\frac{1}{L}\int _{-L}^L f(x)\sin \frac{m\pi x}{L} \, dx=b_{m} \quad m=1,2,\dots$$ now we know how to compute the coefficients for Fourier series! properties: for functions $f$, $g$, If $\int _{-L}^Lf(x)g(x) \, dx=\begin{cases}0 & f\ne g \\L & f=g \end{cases}$ then $f, g$ are orthogonal the forier expantion is called an ortho normal expansion, taylor is not ortho normal. #end of lec 28 #start of lec 29 last lecture we derived how to find the coefficients in a fourier series. $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^\infty\left( a_{n}\cos\left( \frac{n\pi x}{L} \right) + b_{n}\sin\left( \frac{n\pi x}{L}\right) \right)$ $x \in [-L,L]$ ### Theorem: If $f$ and $f'$ are piecewise continuous on $[-L,L]$, then the fourier series converges to: $\frac{1}{2}(f(x^-)+f(x^+))$ for all $x \in (-L,L)$ Basically meaning, the fourier series converges. At $x=\pm L$ the fourier series converges to $\frac{1}{2}(f(-L^+)+f(L^-))$ ![[Partial differential equations (lec 26-27) 2023-11-22 13.15.26.excalidraw]] ### Theorem: If f(x) is continuous on $(-\infty,\infty)$ and $2L$ periodic and if $f'$ is continuous, then the taylor series converges to $f(x)$ everywhere ![[Partial differential equations (lec 26-27) 2023-11-22 13.14.05.excalidraw]] #ex lets compute the fourier transform of: $f(x)=\begin{cases}1, & -\pi\leq x\leq 0 \\x, & 0