Compare commits
No commits in common. "15634685487093c8b53a546384241f6e02649821" and "1761284b70bb78339cea9c531450690892e1f74f" have entirely different histories.
1563468548
...
1761284b70
|
@ -195,7 +195,6 @@ let it be $y_{p}(t)$
|
|||
then the sum of the solutions
|
||||
$y(t)=c_{1}y_{1}(t)+c_{2}y_{2}(t)+y_{p}(t)$ must solve $ay''+by'+cy=f(t)$
|
||||
|
||||
Theorem: If $a(t),\ b(t),\ c(t)$ are continuous on $I$ , then IVP: $a(t)y''+b(t)y'+c(t)y=f(t)$ ;
|
||||
where $y(t_{o})=y_{o}$ , $y'(t_{o})=y_{1}$ has a unique solution.
|
||||
Theorem: If $a(t),\ b(t),\ c(t)$ are continuous on $I$ , then IVP: $a(t)y''+b(t)y'+c(t)y=f(t)$ ; $y(t_{o})=y_{o}$ \ , $y'(t_{o})=y_{1}$ has a unique solution.
|
||||
we will do the proofs next class.
|
||||
#end of lecture 7
|
||||
|
|
|
@ -11,7 +11,7 @@ $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$ <- btw $y_{1}$ and $y_{2}$ are ofte
|
|||
Impose the following:
|
||||
1) $v_{1}'y_{1}+v_{2}'y_{2}=0$
|
||||
Compute the derivatives and simplify:
|
||||
$y_{p}'=v_{1}y_{1}'+v_{2}y_{2}'$
|
||||
$y'_{p}=v_{1}y_{1}'+v_{2}y_{2}'$
|
||||
$y_{p}''=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''$
|
||||
Now we plug those into the second order equation and simplify:
|
||||
2) $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$
|
||||
|
@ -22,7 +22,6 @@ also, $W[y_1,y_{2}]$ is the Wrońskian, and it equals to: $\det \begin{pmatrix}y
|
|||
Finally, the general solution is:
|
||||
$$y(t)=y_{h}+y_{p}\qquad \text{where}\qquad y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$$
|
||||
## What you need to remember
|
||||
#remember
|
||||
So, what do you need to commit to memory? I believe memorizing these three is a good tradeoff between memory allocated and speed for when you're solving a #voparam problem:
|
||||
1) $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$
|
||||
2) $v_{1}'=-\frac{{f(t)y_{2}(t)}}{aW[y_{1},y_{2}]}$
|
||||
|
@ -75,7 +74,9 @@ $y(0)=0=c_{1}-y_{p}(0)=c_{1}-\frac{1}{5} \implies c_{1}=\frac{1}{5}$
|
|||
$y'(0)=\frac{4}{5}=2c_{2}+v_{1}'(0)+2v_{2}(0)-\frac{1}{5} \implies c_{2}=1$
|
||||
$$y(t)=\frac{1}{5}\cos(2t)+\sin(2t)-\frac{1}{5}e^t+v_{1}(t)\cos(2t)+v_{2}(t)\sin(2t)$$
|
||||
|
||||
#end of lecture 9 #start of lecture 10
|
||||
#end of lecture 9
|
||||
#start of lecture 10
|
||||
|
||||
#ex #second_order #voparam #mouc
|
||||
$$y''-2y'+y=e^t\ln(t)+2\cos(t)$$
|
||||
Find homogenous solution first:
|
||||
|
|
|
@ -12,7 +12,7 @@ I have written these notes for myself, I thought it would be cool to share them.
|
|||
[Variation of parameters (lec 9-10)](variation-of-parameters-lec-9-10.html)
|
||||
[Cauchy-Euler equations (lec 10)](cauchy-euler-equations-lec-10.html) (raw notes, not reviewed or revised yet.)
|
||||
[Free vibrations (lec 11-12)](free-vibrations-lec-11-12.html) (raw notes, not reviewed or revised yet.)
|
||||
[Resonance & AM (lec 13-14)](resonance-am-13-14.html)
|
||||
[Resonance in free vibrations (lec 13-14)](resonance-in-free-vibrations-lec-13.html)
|
||||
[Laplace transform (lec 14)](laplace-transform-lec-14.html)
|
||||
|
||||
</br>
|
||||
|
|
Loading…
Reference in New Issue