fixed LT mistake
This commit is contained in:
parent
0706032a9f
commit
e7c16bf284
|
@ -49,7 +49,7 @@ $\mathcal{L}\{e^{\alpha t}\sin(bt)\}=\frac{b}{(s-a)^2+b^2}$ these properties are
|
||||||
|
|
||||||
What if we calculate the LT of $f'$ ?
|
What if we calculate the LT of $f'$ ?
|
||||||
using integration by parts:
|
using integration by parts:
|
||||||
$\mathcal{L}\{f'(t)\}(s)=\int _{0}^\infty e^{-st}f(t)\, dt=e^{-st}f(t)|_{t=0}^{t\to \infty}+s \underbrace{ \int e^{-st}f(t) \, dt }_{ F(s) }$$=sF(s)-f(0)$
|
$\mathcal{L}\{f'(t)\}(s)=\int _{0}^\infty e^{-st}f'(t)\, dt=e^{-st}f(t)|_{t=0}^{t\to \infty}+ \underbrace{s \int e^{-st}f(t) \, dt }_{ sF(s) }$$=sF(s)-f(0)$
|
||||||
$\mathcal{L}\{f''\}=s^2F(s)-sf(0)-f'(0)$
|
$\mathcal{L}\{f''\}=s^2F(s)-sf(0)-f'(0)$
|
||||||
in general, we can use proof by induction to show the following (try at home!):
|
in general, we can use proof by induction to show the following (try at home!):
|
||||||
$\mathcal{L}\{f^{(m)}\}=s^mF(s)-s^{m-1}f(0)-\dots-f^{m-1}(0)$
|
$\mathcal{L}\{f^{(m)}\}=s^mF(s)-s^{m-1}f(0)-\dots-f^{m-1}(0)$
|
||||||
|
|
Loading…
Reference in New Issue