more fixes for voparam
This commit is contained in:
parent
1761284b70
commit
bbfe8f4123
|
@ -11,8 +11,8 @@ $y_{p}(t)=v_{1}(t)y_{1}(t)+v_{2}(t)y_{2}(t)$ <- btw $y_{1}$ and $y_{2}$ are ofte
|
||||||
Impose the following:
|
Impose the following:
|
||||||
1) $v_{1}'y_{1}+v_{2}'y_{2}=0$
|
1) $v_{1}'y_{1}+v_{2}'y_{2}=0$
|
||||||
Compute the derivatives and simplify:
|
Compute the derivatives and simplify:
|
||||||
$y'_{p}=v_{1}y_{1}'+v_{2}y_{2}'$
|
$y_{p}''=v_{1}y_{1}'+v_{2}y_{2}'$
|
||||||
$y_{p}''=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''$
|
$y_{p}'=v_{1}'y_{1}'+v_{1}y_{1}''+v_{2}'y_{2}'+v_{2}y_{2}''$
|
||||||
Now we plug those into the second order equation and simplify:
|
Now we plug those into the second order equation and simplify:
|
||||||
2) $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$
|
2) $v_{1}'y_{1}'+v_{2}'y_{2}'=\frac{f(t)}{a}$
|
||||||
We now have a system of two equations (1 and 2). Now we can solve for $v_{1}$ and $v_{2}$:
|
We now have a system of two equations (1 and 2). Now we can solve for $v_{1}$ and $v_{2}$:
|
||||||
|
|
Loading…
Reference in New Issue