From 5f4e49a000fd99368fc87c8150f99f85039e651c Mon Sep 17 00:00:00 2001 From: Sasserisop Date: Wed, 8 Nov 2023 12:58:49 -0700 Subject: [PATCH] added lec 25 and revised periodic functions --- content/Periodic functions (lec 19).md | 67 +++++++++++----- ... 22-24).md => Power series (lec 22-25).md} | 78 ++++++++++++++++++- content/_index.md | 2 +- 3 files changed, 126 insertions(+), 21 deletions(-) rename content/{Power series (lec 22-24).md => Power series (lec 22-25).md} (74%) diff --git a/content/Periodic functions (lec 19).md b/content/Periodic functions (lec 19).md index 58736c0..77520a2 100644 --- a/content/Periodic functions (lec 19).md +++ b/content/Periodic functions (lec 19).md @@ -1,22 +1,27 @@ #start of lec 19 This lecture we will learn about periodic functions, specifically, non-sinusoidal periodic functions. # Periodic function +#periodic Definition: $f$ is periodic with period $T \quad (T>0)$ if: $$f(t)=f(t+T), \quad \forall\ t\in \mathbb{R}$$ -![[Drawing 2023-10-20 13.06.35.excalidraw]] +![[Drawing 2023-10-20 13.06.35.excalidraw.png]] We will now compute laplace transforms of these periodic functions. Computing DE's containing these periodic functions using something like #voparam would not be easy. +Let's try taking the laplace of a periodic function $f(t)$: If we take the windowed version of the function (one period, where everywhere else is 0, ie:) $f_{T}(t)=\begin{cases}f(t)\ ,\ & 0\leq t\leq T \\0\ ,\ & \text{otherwise}\end{cases}$ we can "glue together" many of these windows together to rebuild our $f(t)$, like this: +$f(t)=f_{T}(t)+f_{T}(t-T)+f_{T}(t-2T)+\dots$ +We can add some unit step functions strategically such that it doesn't change the overall expression: $f(t)=f_{T}(t)+f_{T}(t-T)u(t-T)+f_{T}(t-2T)u(t-2T)+\dots$ -$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}+\mathcal{L}\{f(t-T)u(t-T)\}+\dots$ +hit it with the LT! +$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}+\mathcal{L}\{f_{T}(t-T)u(t-T)\}+\dots$ recall the formula from last lec: $\mathcal{L}\{u(t-a)f(t-a)\}=e^{-as}F(s)$ then: -$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-TS}+e^{-2TS}+e^{-3TS}+\dots)$ -$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-TS}+(e^{-TS})^{2}+(e^{-TS})^{3}+\dots)$ +$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-Ts}+e^{-2Ts}+e^{-3Ts}+\dots)$ +$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\}(1+e^{-Ts}+(e^{-Ts})^{2}+(e^{-Ts})^{3}+\dots)$ This is a geometric series! $1+r+r^2+\dots$ Geometric series are convergent when $|r|<1$ and equal to: $\frac{1}{1-r}$ @@ -25,8 +30,9 @@ so: $$\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\} \frac{1}{1-e^{-Ts}}$$ handy formula! ^ will be used again. #ex -imagine another function: (image is of a square wave with a period of 2a, oscillates between 1 and 0, starts at 1 when t=0.) -![[Drawing 2023-10-20 13.27.58.excalidraw]] +Imagine another function: (image is of a square wave with a period of 2a, oscillates between 1 and 0, starts at 1 when t=0.) +![[Drawing 2023-10-20 13.27.58.excalidraw.png]] +Let's compute its LT: $\mathcal{L}\{f\}=\mathcal{L}\{f_{2a}\} \frac{1}{1-e^{-2as}}$ $f_{2a}=u(t)-u(t-a)$ (this is the first period piece) $\implies \mathcal{L}\{f_{2a}\}=\mathcal{L}\{u(t)\}-\mathcal{L}\{u(t-a)\}=\frac{1}{s}- \frac{e^{-as}}{s}$ @@ -34,21 +40,44 @@ plug back in: $\mathcal{L}\{f\}=\mathcal{L}\{f_{2a}\} \frac{1}{1-e^{-2as}}=\frac{1}{s}\cancel{ (1-e^{-as}) } \frac{1}{\cancel{ (1-e^{-as}) }(1+e^{-as})}$ $$\mathcal{L}\{f\}=\frac{1}{s(1+e^{-as})}$$ -#ex -$y''+3y'+2y=f(t)$ where $f(t)$ is from the previous example -$y(0)=y'(0)=0,\ a=1$ (a is width of 1/2 period in the function f(t)) -$s^2Y+3sY+2Y=\mathcal{L}\{f\}= \frac{1}{s(1+e^{-s})}$ +#ex #IVP #periodic #second_order_nonhomogenous #LT #partial_fractions +Solve for $y(t)$ in the following second order periodic equation: +$$y''+3y'+2y=f(t) \qquad y(0)=y'(0)=0 \quad a=1$$where $f(t)$ is from the previous example and $a$ is the width of $\frac{1}{2}$ of a period in the function $f(t)$ +Hit it with the LT! +$s^2Y+3sY+2Y=\mathcal{L}\{f\}= \frac{1}{s(1+e^{-1s})}$ +$(s+1)(s+2)Y= \frac{1}{s(1+e^{-1s})}$ $Y(s)=\frac{1}{s(s+1)(s+2)} \frac{1}{1+e^{-s}}$ -$=F(s) \frac{1}{1+e^{-s}}$ +What property can we use to find the inverse of that? +> psst. We can use $\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\} \frac{1}{1-e^{-Ts}}$ ;) -$\mathcal{L}^{-1}\{F\}=\mathcal{L}^{-1}\{\frac{1}{2} \frac{1}{s}+\frac{1}{2} \frac{1}{s+2}-\frac{1}{s+1}\}$ -$=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}$ -$y(t)= \dots$ -we want to use formula from earlier -so we need to change $F(s) \frac{1}{1+e^{-s}}$ -to: $F(s) \frac{1e^{-s}}{1-e^{-2s}}$ -$y(t)=p(t)$, periodic with period of 2 ($T=2$) +$Y(s)=F(s) \frac{1}{1+e^{-s}}$ +But that second term has a $1+e^{-Ts}$ term in the denominator, it doesn't match up in the formula. There is a fix, peep this: +$Y(s)=F(s) \frac{1-e^{-s}}{(1+e^{-s})(1-e^{-s})}$ +$Y(s)=F(s) \frac{1-e^{-s}}{1-e^{-2s}}$ <- We are rather lucky, the 2 in the denominator matches $T$, the period of our function. +We can tuck away the numerator into $F(s)$ : +$Y(s)=\underbrace{ \frac{1-e^{-s}}{s(s+1)(s+2)} }_{ F(s) } \frac{1}{1-e^{-2s}}$ +Our equation is now in the correct form. We can now calculate the inverse of $F(s)$ +Split up $F(s)$ : +$Y(s)= \underbrace{ (\frac{1}{s(s+1)(s+2)} }_{ F_{1}(s) }-\underbrace{ \frac{e^{-s}}{s(s+1)(s+2)} )}_{F_{2}(s) } \frac{1}{1-e^{-2s}}$ +We can use partial fractions for the first term and +$\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)$ for the second term. (Where $a=1$) -$$f_{2a}(t)=\mathcal{L}^{-1}\{F(s)-F(s)e^{-s}\}=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}-\left( \frac{1}{2}+\frac{1}{2} e^{-2(t-1)}-e^{-(t-1)})u(t-1 \right)$$ +using partial fractions: +$\frac{1}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}$ +$A(s+1)(s+2)+Bs(s+2)+Cs(s+1)=(A+B+C)s^2+(3A+2B+C)s+2A=1$ +$2A=1\implies A=\frac{1}{2}$ +$\frac{3}{2}+2B+C=0$ +$\frac{1}{2}+B+C=0$ +subtract the two equations. +$1+B=0\implies B=-1$ +$\implies C=\frac{1}{2}$ +$\mathcal{L}^{-1}\{F_{1}\}=\mathcal{L}^{-1}\{\frac{1}{2} \frac{1}{s}-\frac{1}{s+1}+\frac{1}{2} \frac{1}{s+2}\}$ +$\mathcal{L}^{-1}\{F_{1}\}=f_{1}=\frac{1}{2}-e^{-t}+\frac{1}{2}e^{-2t}$ + +Second term ($F_{2}(s)$): use $\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)=F_{2}(s)$ +$f_{2}(t)=u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$ + +$y(t)=p(t)=f_{2a}(t)$ meaning $y(t)$ is a periodic function, with period of $T=2$ +$$f_{2a}(t)=\mathcal{L}^{-1}\{F_{1}(s)-F_{2}(s)\}=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}-u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$$ diff --git a/content/Power series (lec 22-24).md b/content/Power series (lec 22-25).md similarity index 74% rename from content/Power series (lec 22-24).md rename to content/Power series (lec 22-25).md index 69b4fc8..ad9d74a 100644 --- a/content/Power series (lec 22-24).md +++ b/content/Power series (lec 22-25).md @@ -196,4 +196,80 @@ now we have to compute the two distances of these singular points to x=1 To calculate distance: $\alpha_{1}+\beta_{1}i, \qquad \alpha_{2}+\beta_{2}i$ $\sqrt{ (\alpha_{1}-\alpha_{2})^2+(\beta_{1}-\beta_{2})^2 }$ $\rho\geq \sqrt{ 1^2+1^2 }=\sqrt{ 2 }$ -#end of lec 24 \ No newline at end of file +#end of lec 24 +#start of lec 25 +find the zeros of +$xy''-y'+y=0 \qquad x_{0}=2$ +is this function analytic about x_0=2? +DONT FORGET! put it in standard form: +$y''-\frac{1}{x}y'+\frac{y}{x}=0$ <- now we can see that there are singular points at x=0 +so we have a radius convergence of $\rho=2$ +$y(x)=\sum_{n=0}^\infty a_{n}(x-2)^n \quad x\in(0,4)$ +$x-2=t \qquad t\in(-2,2)$ +$y(t)=\sum_{n=0}^\infty a_{n}t^n$ +$y'(t)=\sum_{n=1}^\infty a_{n}nt^{n-1}$ +$y''(t)=\sum_{n=2}^\infty a_{n}n(n-1)t^{n-2}$ +$\sum_{n=2}^\infty a_{n}n(n-1)t^{n-1}+2\sum_{n=2}^\infty a_{n} n(n-1)t^{n-2}-\sum_{n=1}^\infty a_{n}nt^{n-1}+\sum_{n=0}^\infty a_{n}t^n=0$ +n-1=k n-2=k n-1=k +first 5 non-zeros: +$\sum_{k=1}^\infty a_{k+1}(k+1)kt^k+\sum_{k=0}^\infty 2(k+2)(k+1)a_{k+2}t^k-\sum_{k=0}^\infty a_{k+1}(k+1)t^k+\sum_{k=0}^\infty a_{k}t^k$ +$\underbrace{ 4a_{2}-a_{1}+a_{0} }_{ =0 }+\sum_{k=1}^\infty \underbrace{ (a_{k+1}(k+1)k+4a_{k+2}-a_{k+1}(k+1)+a_{k}) }_{ =0 }t^k=0$ +$a_{2}=\frac{a_{1}-a_{0}}{4}$ +$12a_{3}+2a_{2}-2a_{2}+a_{1}=0$ +$a_{3}=-\frac{a_{1}}{12}$ +$a_{4}=-\frac{1}{24}(3a_{3}+a_{2})=\frac{1}{96}a_{1}-\frac{a_{1}}{96}+\frac{a_{0}}{96}=\frac{a_{0}}{96}$ +$y(x)=a_{0}+a_{1}(x-2)+\frac{a_{1}-a_{0}}{4}(x-2)^2-\frac{a_{1}}{12}(x-2)^3+\frac{a_{0}}{96}(x-2)^4+\dots$ +in this case we cant go much further, cant explicitly find the coefficients for each term. in the last lecture's example we were lucky. +So we are done. + +#ex +Find first four non-zero terms of the power series for $y(x)$ about $x_{0}=\pi$ +of the IVP: +$$y''-\sin (x)y=0 \qquad y(\pi)=1 \qquad y'(\pi)=0$$ +This is already in standard form. +clearly this is analytical over the entire real axis, sin(x) and 1 are both infinitely differentiable. no singular points real or complex. +$y(x)=\sum_{n=0}^\infty a_{n}(x-\pi)^n \qquad x-\pi=t$ +$y(t)=\sum_{n=0}^\infty a_{n}t^n$ <- we are abusing notation, the y here isn't the same as above. But it's all good. +$y''-\sin(t+\pi)\sum_{n=0}^\infty a_{n}t^n=0$ +$y''+\sin(t)\sum_{n=0}^\infty a_{n}t^n=0$ +$\sum_{n=2}^\infty a_{n}n(n-1)t^{n-2}+\left( \sum_{n=0}^\infty(-1)^n \frac{t^{2n+1}}{(2n+1)!} \right)\left( \sum_{n=0}^\infty a_{n}t^n \right)$ remember, sin is odd so its infinite series has odd powers. +now from: + +$y''+\sin(t)\sum_{n=0}^\infty a_{n}t^n=0$ +$y(t)=\sum_{n=0}^\infty a_{n}t^n$ +this implies $y(0)=1=a_{0} \quad y'(0)=0=a_{1}$ + +from the big summ-y equation: +$(2a_{2}+6a_{3}t+12a_{4}t^2+20a_{5}t^3+\dots)+\left( t-\frac{t^3}{6}+\frac{t^5}{120}-\dots \right)(a_{0}+a_{1}t+a_{2}t^2+a_{3}t^3+\dots)=0$ +the only constant factor is $a_{2}$ +this implies: $2a_{2}=0 \implies a_{2}=0$ +what about the factors of $t$? +$(6a_{3}+a_{0})t=0$ +$a_{3}=-\frac{a_{0}}{6}=-\frac{1}{6}$ + +$t^2$: +$(12a_{4}+a_{1})t^2=0$ +$a_{2}=-\frac{a_{1}}{12}$ + +$t^3$: +$\left( 20a_{5}+a_{2}-\frac{a_{0}}{6} \right)=0 \implies a_{5}=\frac{1}{120}$ + +$t^4$: +$\left( 30a_{6}+a_{3}-\frac{a_{1}}{6} \right)t^4=0 \implies a_{6}=\frac{1}{180}$ +$y(x)=1-\frac{1}{6}(x-\pi)^3+\frac{1}{120}(x-\pi)^5+\frac{1}{180}(x-\pi)^6+\dots$ +theres no general formula here for the constants? (or maybe no formula for y(x)?), but we can write the solution in the following form^. + +#ex +$$y'-xy=e^x \qquad x_{0}=0$$ +$y(x)=\sum_{n=0}^\infty a_{n}x^n$ +$y'(x)=\sum_{n=1}^\infty a_{n}nx^{n-1}$ +$\sum_{k=0}^\infty a_{k+1}(k+1)x^k-\sum_{k=1}^\infty a_{k-1}x^k-\sum_{k=0}^\infty \frac{x^k}{k!}=0$ + +$a_{1}-1=0 \implies a_{1}=1$ +$a_{k+1}=\frac{a_{k-1}+\frac{1}{k!}}{k+1}$ +$k=1\implies a_{2}=\frac{a_{0}}{2}+\frac{1}{2}$ +$k=2\implies a_{3}=\frac{1}{2}$ +$k=3\implies a_{4}=\frac{ \left( \frac{a_{0}}{2}+\frac{1}{2} \right)+\frac{1}{6}}{4}$ +We are lucky, in this course fubini's method is not needed. (what?) +and with that, we are finished this chapter on power series. +#end of lec 25 \ No newline at end of file diff --git a/content/_index.md b/content/_index.md index 8df141b..d75e17b 100644 --- a/content/_index.md +++ b/content/_index.md @@ -22,7 +22,7 @@ Good luck on midterms! <3 -Oct 18 2023 [Periodic functions (lec 19)](periodic-functions-lec-19.html) (raw notes, not reviewed or revised yet.) [Convolution (lec 19-20)](convolution-lec-19-20.html) (raw notes, not reviewed or revised yet.) [Dirak δ-function (lec 21)](dirak-δ-function-lec-21.html) (raw notes, not reviewed or revised yet.) -[Power series (lec 22-24)](power-series-lec-22-24.html) (raw notes, not reviewed or revised yet.) +[Power series (lec 22-25)](power-series-lec-22-25.html) (raw notes, not reviewed or revised yet.)
[How to solve any DE, a flow chart](Solve-any-DE.png) (Last updated Oct 1st, needs revision. But it gives a nice overview.) [Big LT table (.png)](drawings/bigLTtable.png)