revised Solving IVP's using LT
This commit is contained in:
parent
bc3766c009
commit
5188f53d52
|
@ -1,6 +1,6 @@
|
||||||
# Free vibrations
|
# Free vibrations
|
||||||
## Definition
|
## Definition
|
||||||
This is a mass-spring system with friction: (imagine the $\beta$ was $b$ instead)
|
This is a mass-spring system with friction: (imagine the $\beta$ in the image below was $b$ instead)
|
||||||
![mbk.png](drawings/mbk.png)
|
![mbk.png](drawings/mbk.png)
|
||||||
This mass-spring system with friction can be modelled by the following differential equation:
|
This mass-spring system with friction can be modelled by the following differential equation:
|
||||||
$$my''+by'+ky=F_{ext}(t)$$
|
$$my''+by'+ky=F_{ext}(t)$$
|
||||||
|
@ -8,7 +8,7 @@ Where:
|
||||||
$$\begin{matrix}F_{ext}(t) & \text{any external forces applied }(N) \\m & \text{mass } (kg) \\b & \text{damping constant } \left( \frac{Ns}{m} \right) \\k & \text{spring constant } \left( \frac{N}{m} \right)\end{matrix}$$
|
$$\begin{matrix}F_{ext}(t) & \text{any external forces applied }(N) \\m & \text{mass } (kg) \\b & \text{damping constant } \left( \frac{Ns}{m} \right) \\k & \text{spring constant } \left( \frac{N}{m} \right)\end{matrix}$$
|
||||||
Free vibrations are when there are <u>no external forces</u> applied upon an oscillatory system. ie:
|
Free vibrations are when there are <u>no external forces</u> applied upon an oscillatory system. ie:
|
||||||
$$F_{ext}(t)=0$$
|
$$F_{ext}(t)=0$$
|
||||||
Free vibrations is really another word for #second_order_homogenous But it puts emphasis that we are modelling a friction-mass-spring system and that we can describe the solution—the position of the mass $y(t)$—in terms of frequency, phase shift, and amplitude: $\omega,\ \phi,\ A$. It's more of a case study on real world implications than anything else.
|
Free vibrations is really another word for #second_order_homogenous But it puts emphasis that we are modelling a friction-mass-spring system and that we can describe the solution—the position of the mass $y(t)$—in terms of angular frequency, phase shift, and amplitude: $\omega,\ \phi,\ A$. It's more of a case study on real world implications than anything else.
|
||||||
## System derivation
|
## System derivation
|
||||||
Let's start solving the DE!
|
Let's start solving the DE!
|
||||||
$mr^2+br+k=0$ is the characteristic polynomial.
|
$mr^2+br+k=0$ is the characteristic polynomial.
|
||||||
|
@ -55,8 +55,9 @@ so we can compute $A$ and $\phi$ from $c_1$ and $c_2$.
|
||||||
## Examples
|
## Examples
|
||||||
#ex #second_order_homogenous #IVP
|
#ex #second_order_homogenous #IVP
|
||||||
Solve the following IVP's when $b=0$, $b=6$, $b=10$, and $b=12$
|
Solve the following IVP's when $b=0$, $b=6$, $b=10$, and $b=12$
|
||||||
(This is more of a study than an example problem. We have already solved equations like this so treat it as an exploration. Note the important takeaways at the end of each case)
|
|
||||||
$$y''+by'+25y=0 \qquad y(0)=1\quad y'(0)=0$$
|
$$y''+by'+25y=0 \qquad y(0)=1\quad y'(0)=0$$
|
||||||
|
(This is more of a study than an example problem. We have already solved equations like this so treat it as an exploration. Note the important takeaways at the end of each case)
|
||||||
|
|
||||||
1.) b=0 -> no friction in the system (undamped)
|
1.) b=0 -> no friction in the system (undamped)
|
||||||
$b^2-4mk<0$ (under damped)
|
$b^2-4mk<0$ (under damped)
|
||||||
$\alpha=-\frac{b}{2m}=0$
|
$\alpha=-\frac{b}{2m}=0$
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
|
|
||||||
#start of lec 17
|
#start of lec 17
|
||||||
But first, midterm review!
|
*Lecture starts with a 25 minute long midterm review.*
|
||||||
He spends most of the time giving us a summary of all the equations (separable, linear, homogenous, exact, ...) The review is available on the eclass page. 25 minutes spent in total covering what will be on the midterm!
|
He spends most of the time giving us a summary of all the equations (separable, linear, homogenous, exact, ...) The review is available on the eclass page.
|
||||||
|
|
||||||
So, why did we learn all this stuff about Laplace transforms? We will now see how its useful:
|
So, why did we learn all this stuff about Laplace transforms? We will now see how its useful:
|
||||||
# Solving IVP's with Laplace
|
# Solving IVP's with Laplace
|
||||||
|
@ -45,55 +45,57 @@ Partial fraction time:
|
||||||
$Y(s)=\frac{1}{(s-1)^3(s+1)}=\frac{A}{s-1}+\frac{B}{(s-1)^2}+\frac{C}{(s-1)^3}+\frac{D}{s+1}$
|
$Y(s)=\frac{1}{(s-1)^3(s+1)}=\frac{A}{s-1}+\frac{B}{(s-1)^2}+\frac{C}{(s-1)^3}+\frac{D}{s+1}$
|
||||||
$\frac{{A(s-1)^2(s+1)+B(s-1)(s+1)+C(s+1)+D(s-1)^3}}{(s-1)^3(s+1)}$
|
$\frac{{A(s-1)^2(s+1)+B(s-1)(s+1)+C(s+1)+D(s-1)^3}}{(s-1)^3(s+1)}$
|
||||||
$\begin{matrix}A+D=0 \\A-2A+B-3D=0 \\ A-2A+B-B+C+3D=0 \\ A-B+C-D=1\end{matrix}$
|
$\begin{matrix}A+D=0 \\A-2A+B-3D=0 \\ A-2A+B-B+C+3D=0 \\ A-B+C-D=1\end{matrix}$
|
||||||
|
We can express this linear system as a matrix:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
$\begin{bmatrix}1 & 0 & 0 & 1 & 0 \\-1 & 1 & 0 & -3 & 0 \\-1 & 0 & 1 & 3 & 0 \\ 1 & -1 & 1 & -1 & 1\end{bmatrix}$
|
$\begin{bmatrix}1 & 0 & 0 & 1 & 0 \\-1 & 1 & 0 & -3 & 0 \\-1 & 0 & 1 & 3 & 0 \\ 1 & -1 & 1 & -1 & 1\end{bmatrix}$
|
||||||
|
Solving this matrix is a PITA. you could use row reduction or Cramer's rule.
|
||||||
|
However, I happen to know that adding all four gives an equation for $C$ alone. We are lucky, this is not always the case.
|
||||||
|
$0+0+2C+0=1 \qquad \implies C=\frac{1}{2}$
|
||||||
|
Add equations 1 and 3:
|
||||||
|
$C+4D=0 \qquad\qquad\ \ \ \implies D=\frac{-1}{8}$
|
||||||
|
equation 3:
|
||||||
|
$-A+C+3D=0 \qquad \implies A=\frac{1}{2}-\frac{3}{8}=\frac{1}{8}$
|
||||||
|
equation 2:
|
||||||
|
$-A+B-3D=0 \qquad \implies B=\frac{1}{8}-\frac{3}{8}=-\frac{1}{4}$
|
||||||
|
|
||||||
$-A+B-3D=0$
|
Plug into expression then take inv LT to obtain y(x):
|
||||||
$-A+C+3D=0$
|
$y(x)=\frac{1}{8}e^x-\frac{1}{4}xe^x+\frac{1}{4}x^2e^x-\frac{1}{8}e^{-x}$
|
||||||
|
substitute back $x=t-2$
|
||||||
$A=\frac{1}{8}$
|
$$y(t)=\frac{1}{8}e^{t-2}-\frac{1}{4}(t-2)e^{t-2}+\frac{1}{4}(t-2)^2e^{t-2}-\frac{1}{8}e^{-(t-2)}$$
|
||||||
$B=-\frac{1}{4}$
|
|
||||||
$C=\frac{1}{2}$
|
|
||||||
$D=-\frac{1}{8}$
|
|
||||||
plug into expression then take inv LT to obtain y(t):
|
|
||||||
final solution: $y(x)=\frac{1}{8}e^x-\frac{1}{4}xe^x+\frac{1}{4}x^2e^x-\frac{1}{8}e^-x$
|
|
||||||
where x=t-2
|
|
||||||
all done!
|
all done!
|
||||||
#end of lec 17 #start of lec 18
|
#end of lec 17 #start of lec 18
|
||||||
|
#ex #LT #IVP
|
||||||
#ex
|
Solve the following equation using LT:
|
||||||
$$y''+ty'-2y=2 \qquad y(0)=y'(0)=0$$
|
$$y''+ty'-2y=2 \qquad y(0)=y'(0)=0$$
|
||||||
hit it with the LT!
|
hit it with the LT!
|
||||||
$\mathcal{L}\{y''\}+\mathcal{L}\{ty'\}-2\mathcal{L}\{y\}=\frac{2}{s}$
|
$\mathcal{L}\{y''\}+\mathcal{L}\{ty'\}-2\mathcal{L}\{y\}=\frac{2}{s}$
|
||||||
|
$s^2Y(s)-s\cancelto{ 0 }{ y(0) }-\cancelto{ 0 }{ y'(0) }-\frac{d}{ds}\mathcal{L}\{y'\}-2Y(s)=\frac{2}{s}$
|
||||||
$s^2Y(s)-\frac{d}{ds}\mathcal{L}\{y'\}-2Y(s)=\frac{2}{s}$
|
$s^2Y-\frac{d}{ds}(sY(s)-\cancelto{ 0 }{ y(0) })-2Y=\frac{2}{s}$
|
||||||
$s^2Y-\frac{d}{ds}(sY(s))-2Y=\frac{2}{s}$
|
|
||||||
apply product rule:
|
apply product rule:
|
||||||
$s^2Y-Y-s\frac{dY}{ds}=\frac{2}{s}$
|
$s^2Y-3Y-s\frac{dY}{ds}=\frac{2}{s}$
|
||||||
^ Boooo! another differential equation! :(
|
^ Boooo! another differential equation! :(
|
||||||
$\frac{dY}{ds}$ lies in the s "phase space"
|
$\frac{dY}{ds}$ lies in the s "phase space"
|
||||||
$-s\frac{dY}{ds}+s\left( s-\frac{3}{5} \right)=\frac{2}{s}$
|
$-s\frac{dY}{ds}+s\left( s-\frac{3}{s} \right)Y=\frac{2}{s}$
|
||||||
This is a linear equation!
|
This is a linear equation!
|
||||||
divide by -s to get it in standard form
|
divide both sides by $-s$ to get it in standard form
|
||||||
$\frac{dY}{ds}-\left( s-\frac{3}{5} \right)y=-\frac{2}{s^2}$
|
$\frac{dY}{ds}-\left( s-\frac{3}{s} \right)Y=-\frac{2}{s^2}$
|
||||||
compute integrating factor:
|
compute integrating factor:
|
||||||
$\mu(s)=e^{-\int (s-3/s) \, ds}=e^{-s^2/2}e^{\ln{s^3}}=s^3e^{-s^2/2}$
|
$\mu(s)=e^{-\int (s-3/s) \, ds}=e^{-s^2/2}e^{\ln{s^3}}=s^3e^{-s^2/2}$
|
||||||
$\frac{d}{ds}(s^3e^{-s^2/2}Y)=-2se^{-s^2/2}$
|
> ^interesting, why no abs() when integrating $\frac{1}{s}$ ?
|
||||||
|
|
||||||
|
recall, $(\mu Y)'=\mu(s)Q(s)$ according to linear equation solving technique.
|
||||||
|
However, you could also continue from here using the formula $Y(s)=\frac{1}{\mu(s)}\int \mu(s) Q(s) \, ds$
|
||||||
|
$\frac{d}{ds}(s^3e^{-s^2/2}Y)= \underbrace{ -2se^{-s^2/2} }_{ \mu(s)Q(s) }$
|
||||||
|
integrate both sides:
|
||||||
$s^3e^{-s^2/2}Y=-2\int se^{-s^2/2} \, ds$
|
$s^3e^{-s^2/2}Y=-2\int se^{-s^2/2} \, ds$
|
||||||
use u sub.
|
use u sub:
|
||||||
$u=\frac{s^2}{2}$
|
$u=\frac{s^2}{2} \qquad du=sds$
|
||||||
$-2\int e^{-u} \, du$
|
$=-2\int e^{-u} \, du$
|
||||||
$=2e^{-s^2/2}+C$
|
$s^3e^{-s^2/2}Y=2e^{-s^2/2}+C$
|
||||||
$Y(s)=2s^3+C \frac{e^{s^2/2}}{s^3}$
|
$Y(s)=\frac{2}{s^3}+C \frac{e^{s^2/2}}{s^3}$
|
||||||
is this even a legitimate thing to take an inverse of?
|
Is this even a legitimate thing to take an inverse of?
|
||||||
the lim of the expression approaches inf as s approaches inf
|
The lim of the expression approaches inf as s approaches inf due to the exponential.
|
||||||
So what do we do? Well we have that C term. We have to set $C=0$
|
So what do we do? Well we have that $C$ term. We have to set $C=0$
|
||||||
then:
|
then:
|
||||||
$Y(s)=\frac{2}{s^3}$
|
$Y(s)=\frac{2}{s^3}$
|
||||||
$$y(t)=t^2$$
|
$$y(t)=t^2$$
|
||||||
we just solved a new equation that hasn't fit into our previous equation types using LT. How cool is that!
|
We just solved a new equation that hasn't fit into our previous equation types using LT. How cool is that!
|
||||||
|
|
|
@ -17,7 +17,7 @@ Good luck on midterms! <3 -Oct 18 2023
|
||||||
[Free vibrations (lec 11-12)](free-vibrations-lec-11-12.html)
|
[Free vibrations (lec 11-12)](free-vibrations-lec-11-12.html)
|
||||||
[Resonance & AM (lec 13-14)](resonance-am-lec-13-14.html)
|
[Resonance & AM (lec 13-14)](resonance-am-lec-13-14.html)
|
||||||
[Laplace transform (lec 14-16)](laplace-transform-lec-14-16.html)
|
[Laplace transform (lec 14-16)](laplace-transform-lec-14-16.html)
|
||||||
[Solving IVP's using Laplace transform (lec 17-18)](solving-ivps-using-laplace-transform-lec-17-18.html) (raw notes, not reviewed or revised yet.)
|
[Solving IVP's using Laplace transform (lec 17-18)](solving-ivps-using-laplace-transform-lec-17-18.html)
|
||||||
[(Heaviside) Unit step function (lec 18)](heaviside-unit-step-function-lec-18.html) (raw notes, not reviewed or revised yet.)
|
[(Heaviside) Unit step function (lec 18)](heaviside-unit-step-function-lec-18.html) (raw notes, not reviewed or revised yet.)
|
||||||
[Periodic functions (lec 19)](periodic-functions-lec-19.html) (raw notes, not reviewed or revised yet.)
|
[Periodic functions (lec 19)](periodic-functions-lec-19.html) (raw notes, not reviewed or revised yet.)
|
||||||
[Convolution (lec 19-20)](convolution-lec-19-20.html) (raw notes, not reviewed or revised yet.)
|
[Convolution (lec 19-20)](convolution-lec-19-20.html) (raw notes, not reviewed or revised yet.)
|
||||||
|
|
Loading…
Reference in New Issue