added lec 19
This commit is contained in:
parent
0406394998
commit
059087096f
|
@ -17,7 +17,7 @@ $\frac{dy}{dx}=\frac{dy}{dt}{\frac{dt}{dx}}=\frac{ dy }{ dt }{\frac{1}{x}}\Right
|
||||||
compute 2nd derivative of y wrt to x:
|
compute 2nd derivative of y wrt to x:
|
||||||
$\frac{d^2y}{dx^2}=\frac{d^2y}{dt^2} \frac{dt}{dx}\cdot \frac{dt}{dx}+\frac{dy}{dt}{\frac{d^2t}{dx^2}}=\frac{1}{x^2}{\frac{d^2y}{dt^2}}-\frac{\frac{1}{x^2}dy}{dt}$
|
$\frac{d^2y}{dx^2}=\frac{d^2y}{dt^2} \frac{dt}{dx}\cdot \frac{dt}{dx}+\frac{dy}{dt}{\frac{d^2t}{dx^2}}=\frac{1}{x^2}{\frac{d^2y}{dt^2}}-\frac{\frac{1}{x^2}dy}{dt}$
|
||||||
$\underset{ \text{Important} }{ x^2{\frac{d^2y}{dx^2}}=\frac{d^2y}{dt^2}-\frac{dy}{dt} }$
|
$\underset{ \text{Important} }{ x^2{\frac{d^2y}{dx^2}}=\frac{d^2y}{dt^2}-\frac{dy}{dt} }$
|
||||||
plugging those derivatives in we get:
|
plugging those derivatives in we get: #remember
|
||||||
$$a\frac{d^2y}{dt^2}+(b-a){\frac{dy}{dt}}+cy(t)=f(e^t)$$
|
$$a\frac{d^2y}{dt^2}+(b-a){\frac{dy}{dt}}+cy(t)=f(e^t)$$
|
||||||
^ this is a constant coefficient second order non-homogenous equation now! We can solve it now using prior tools.
|
^ this is a constant coefficient second order non-homogenous equation now! We can solve it now using prior tools.
|
||||||
|
|
||||||
|
|
|
@ -1,15 +0,0 @@
|
||||||
# Convolution
|
|
||||||
A convolution is an operation of function, we take two functions, convolute them and get a new function.
|
|
||||||
Definition of convolution between f and g:
|
|
||||||
$$(f*g)(t):=\int _{0} ^t f(t-v)g(v)\, dv$$
|
|
||||||
property 1) $f*g=g*f$
|
|
||||||
proof:
|
|
||||||
$f*g=\int _{0} ^t f(t-v)g(v)\, \underset{ t-v=u }{ dv }=-\int _{t} ^0 f(u)g(t-u) \, du$
|
|
||||||
$=\int _{0} ^t g(t-u)f(u)\, du=g*f \quad \Box$
|
|
||||||
|
|
||||||
property 2) $(f+g)*h=f*h+g*h$
|
|
||||||
property 3) $(f*g)*h=f*(g*h)$
|
|
||||||
property 4) $f*0=0$
|
|
||||||
property 5) $\mathcal{L}\{f*g\}=F(s)G(s)$
|
|
||||||
he will see us tomorrow at 10oclock. ;)
|
|
||||||
#end of lec 19
|
|
|
@ -0,0 +1,84 @@
|
||||||
|
# Convolution
|
||||||
|
A convolution is an operation of function, we take two functions, convolute them and get a new function.
|
||||||
|
Definition of convolution between f and g:
|
||||||
|
$$(f*g)(t):=\int _{0} ^t f(t-v)g(v)\, dv$$
|
||||||
|
property 1) $f*g=g*f$
|
||||||
|
proof:
|
||||||
|
$f*g=\int _{0} ^t f(t-v)g(v)\, \underset{ t-v=u }{ dv }=-\int _{t} ^0 f(u)g(t-u) \, du$
|
||||||
|
$=\int _{0} ^t g(t-u)f(u)\, du=g*f \quad \Box$
|
||||||
|
|
||||||
|
property 2) $(f+g)*h=f*h+g*h$
|
||||||
|
property 3) $(f*g)*h=f*(g*h)$
|
||||||
|
property 4) $f*0=0$
|
||||||
|
property 5) $\mathcal{L}\{f*g\}=F(s)G(s)$
|
||||||
|
he will see us tomorrow at 10oclock. ;)
|
||||||
|
#end of lec 19
|
||||||
|
#start of lec 20
|
||||||
|
lets try proving property 5:
|
||||||
|
recall property 5: $\mathcal{L}\{f*g\}=F(s)G(s)$
|
||||||
|
$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^t f(t-v)g(v) \, dv \right)\, dt$
|
||||||
|
$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^\infty u(t-v)f(t-v)g(v) \, dv \right)\, dt$
|
||||||
|
two nested integrals!
|
||||||
|
using math 209, if both integrals exist, we can exchange the two integrals:
|
||||||
|
$=\int _{0}^\infty ( g(v)\underbrace{ \int _{0}^\infty e^{-st}f(t-v)u(t-v)\, dt }_{ \mathcal{L}\{f(t-v)u(t-v)\}=e^{-vs}F(s) } )\, dv$
|
||||||
|
$=F(s)\int _{0} ^\infty e^{-rs}g(v)\, dv=F(s)G(s) \quad \Box$
|
||||||
|
This is a very useful fact. We will see how it helps us solve differential equations.
|
||||||
|
|
||||||
|
ex:
|
||||||
|
$$\mathcal{L}^{-1}\left\{ \frac{1}{s^2+1}\frac{1}{s^2+1} \right\}$$
|
||||||
|
we know the inverse of 1/s^2+1 is sin(t):
|
||||||
|
then:
|
||||||
|
$=(\sin*\sin)(t)$
|
||||||
|
$=\int _{0}^t \sin(t-v)\sin(v)\, dv$
|
||||||
|
use identity: $\sin \alpha \sin \beta=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\beta-\alpha)$ DOUBLE CHECK!
|
||||||
|
$=\frac{1}{2}\int _{0} ^t (\cos(t-2v)-\cos(t))\, dv$
|
||||||
|
$=\frac{1}{2}\left( -\frac{1}{2}\sin(t-2v)|^t_{0}-t\cos t \right)=\frac{1}{2}\left( \frac{1}{2}\sin(t)+\frac{1}{2}\sin(t)-t\cos t \right)$
|
||||||
|
$$=\frac{1}{2}(\sin t-t\cos t)$$
|
||||||
|
#ex
|
||||||
|
solve the problem:
|
||||||
|
$$y'+y-\int _{0} ^t y(v)\sin(t-v) \, dv =-\sin t,\qquad y(0)=1$$
|
||||||
|
this is called an integral-differential equation.
|
||||||
|
we can convert it to a differential equation by taking the derivative of both sides (wrt to dt.):
|
||||||
|
$y''+y'-y\sin(t-v)=-\cos t$
|
||||||
|
ew thats a gross second order linear equation. lets do it another way
|
||||||
|
|
||||||
|
$sY-1+Y-\mathcal{L}\{(y*\sin)(t)\}=-\frac{1}{s^2+1}$
|
||||||
|
$\left( s+1-\frac{1}{s^2+1}\right)Y(s)=1-\frac{1}{s^2+1}=\frac{s^2}{s^2+1}$
|
||||||
|
$\frac{(s^2+1)(s+1)-1}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$
|
||||||
|
$\frac{s^3+s^2+s+\cancel{ 1 }-\cancel{ 1 }}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$
|
||||||
|
$Y(s)=\frac{s}{s^2+s+1}$
|
||||||
|
$y(t)=\mathcal{L}^{-1}\left\{ \frac{s}{s^2+s+1} \right\}=\mathcal{L}^{-1}\{\frac{s}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2}\}$
|
||||||
|
$=\mathcal{L}^{-1}\left\{ \frac{s+\frac{1}{2}-\frac{1}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$
|
||||||
|
$=e^{-t/2}\cos\left( \frac{\sqrt{ 2 }}{2}t \right)-\frac{1}{2} \frac{2}{\sqrt{ 3 }}\mathcal{L}^{-1}\left\{ \frac{\frac{\sqrt{ 3 }}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$
|
||||||
|
$$y(t)=e^{-t/2}\left( \cos \frac{\sqrt{ 3 }}{2}t-\frac{1}{\sqrt{ 3 }} \sin \frac{\sqrt{ 3 }}{2}t\right)$$
|
||||||
|
this is a good algorithmic method now for solving differential equations in software, for example solving circuits.
|
||||||
|
|
||||||
|
## Transfer function
|
||||||
|
imagine we have the equation:
|
||||||
|
$$ay''+by'+cy=g(t), \qquad y(0)=y_{0},\ y'(0)=y_{1}$$
|
||||||
|
1)
|
||||||
|
$ay''+by'+cy=g(t)$
|
||||||
|
$y(0)=y'(0)=0$
|
||||||
|
gives a solution $y_{*}$
|
||||||
|
2)
|
||||||
|
$ay''+by'+cy=0$
|
||||||
|
$y(0)=y_{0},\ y'(0)=y_{1}$
|
||||||
|
gives a soltuion $y_{**}=c_{1}y_{1}+c_{2}y_{2}$
|
||||||
|
|
||||||
|
then by principle of super position:
|
||||||
|
$y=y_{*}+y_{**}$
|
||||||
|
|
||||||
|
solving 1) gives us:
|
||||||
|
$as^2Y+bsY+cY=G(s)$
|
||||||
|
$Y(s)=\frac{1}{as^2+bs+c}G(s)$ the limit approaches 0 for large s so its a legitimate Laplace transform
|
||||||
|
let $Y(s)=H(s)G(s)$
|
||||||
|
where $H(s)=\frac{1}{as^2+bs+c}$ and called the transfer function
|
||||||
|
|
||||||
|
we put in $g(t)$ and we get out $Y(s)$. So it "transfers".
|
||||||
|
$H(s)=\frac{Y(s)}{G(s)}$
|
||||||
|
$\mathcal{L}^{-1}\{H\}=h(t)$ called the impulse response function. We will see why its called that later.
|
||||||
|
$y_{*}(t)=(h*g)(t)$
|
||||||
|
$y(t)=(h*g)(t)+c_{1}y_{1}+c_{2}y_{2}$
|
||||||
|
|
||||||
|
he's finished 8 minutes early, lets go!
|
||||||
|
#end of lec 20
|
|
@ -17,7 +17,7 @@ compute the LT of this funny function:
|
||||||
$f(t)=\begin{cases}1 &\text{if } 0\leq t\leq 1 \\ 2 &\text{if } 1<t\leq 2 \\0 & \text{if } 2<t \end{cases}$
|
$f(t)=\begin{cases}1 &\text{if } 0\leq t\leq 1 \\ 2 &\text{if } 1<t\leq 2 \\0 & \text{if } 2<t \end{cases}$
|
||||||
$F(s)=\int _{0}^1 e^{-st}\, dt+2\int _{1}^2 e^{-st}\, dt+0$
|
$F(s)=\int _{0}^1 e^{-st}\, dt+2\int _{1}^2 e^{-st}\, dt+0$
|
||||||
$F(s)=-\frac{1}{s}e^{-st}|_{t=0}^{t=1}-\frac{2}{s}e^{-st}|_{t=1}^{t=2}$
|
$F(s)=-\frac{1}{s}e^{-st}|_{t=0}^{t=1}-\frac{2}{s}e^{-st}|_{t=1}^{t=2}$
|
||||||
$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{5}(e^{-2s}-e^{-s})$$
|
$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{s}(e^{-2s}-e^{-s})$$
|
||||||
We have shown how to compute the LT of a choppy function.
|
We have shown how to compute the LT of a choppy function.
|
||||||
|
|
||||||
$\mathcal{L}\{\alpha f(t)+\beta g(t)\}=\alpha \mathcal{L}\{f\}+\beta y\mathcal{L}\{g\}$
|
$\mathcal{L}\{\alpha f(t)+\beta g(t)\}=\alpha \mathcal{L}\{f\}+\beta y\mathcal{L}\{g\}$
|
||||||
|
|
|
@ -6,11 +6,18 @@ Also remember the following:
|
||||||
## derivatives of trigs
|
## derivatives of trigs
|
||||||
$\frac{d}{dx}\tan(x)=sec^2(x)$
|
$\frac{d}{dx}\tan(x)=sec^2(x)$
|
||||||
$\frac{d}{dx}sec(x)=sec(x)\tan(x)$
|
$\frac{d}{dx}sec(x)=sec(x)\tan(x)$
|
||||||
...
|
$\frac{d}{dx}\csc=-\csc x\cot x$
|
||||||
|
$\frac{d}{dx}\cot (x)=-\csc^2(x)$
|
||||||
## integrals of trigs
|
## integrals of trigs
|
||||||
$\int \tan(x) \, dx=\ln\mid \sec(x)\mid+C$
|
$\int \tan(x) \, dx=\ln\mid \sec(x)\mid+C$
|
||||||
$\int sec(x) \, dx=\ln\mid sec(x)+\tan(x)\mid+C$
|
$\int sec(x) \, dx=\ln\mid sec(x)+\tan(x)\mid+C$
|
||||||
...
|
$\int \csc x \, dx=-\ln|\csc x+\cot x|+C$
|
||||||
|
$\int \cot x \, dx=-\ln|\csc x|+C$
|
||||||
|
|
||||||
|
## Integrals:
|
||||||
|
$\int \frac{1}{1+x^2} \, dx=\arctan(x)+C$
|
||||||
|
|
||||||
|
|
||||||
## integration by parts
|
## integration by parts
|
||||||
LIATE -> log, inv trig, algebraic, trig, exp
|
LIATE -> log, inv trig, algebraic, trig, exp
|
||||||
set u to the first in the list above
|
set u to the first in the list above
|
||||||
|
|
|
@ -20,7 +20,7 @@ Good luck on midterms! <3 -Oct 18 2023
|
||||||
[Solving IVP's using Laplace transform (lec 17-18)](solving-ivps-using-laplace-transform-lec-17-18.html) (raw notes, not reviewed or revised yet.)
|
[Solving IVP's using Laplace transform (lec 17-18)](solving-ivps-using-laplace-transform-lec-17-18.html) (raw notes, not reviewed or revised yet.)
|
||||||
[(Heaviside) Unit step function (lec 18)](heaviside-unit-step-function-lec-18.html) (raw notes, not reviewed or revised yet.)
|
[(Heaviside) Unit step function (lec 18)](heaviside-unit-step-function-lec-18.html) (raw notes, not reviewed or revised yet.)
|
||||||
[Periodic functions (lec 19)](periodic-functions-lec-19.html) (raw notes, not reviewed or revised yet.)
|
[Periodic functions (lec 19)](periodic-functions-lec-19.html) (raw notes, not reviewed or revised yet.)
|
||||||
[Convolution (lec 19)](convolution-lec-19.html)
|
[Convolution (lec 19-20)](convolution-lec-19-20.html) (raw notes, not reviewed or revised yet.)
|
||||||
</br>
|
</br>
|
||||||
[How to solve any DE, a flow chart](Solve-any-DE.png) (Last updated Oct 1st, needs revision. But it gives a nice overview.)
|
[How to solve any DE, a flow chart](Solve-any-DE.png) (Last updated Oct 1st, needs revision. But it gives a nice overview.)
|
||||||
</br>
|
</br>
|
|
@ -0,0 +1,142 @@
|
||||||
|
[1mdiff --git a/content/Cauchy-Euler equations (lec 10-11).md b/content/Cauchy-Euler equations (lec 10-11).md[m
|
||||||
|
[1mindex 4784e82..f5c9875 100644[m
|
||||||
|
[1m--- a/content/Cauchy-Euler equations (lec 10-11).md[m
|
||||||
|
[1m+++ b/content/Cauchy-Euler equations (lec 10-11).md[m
|
||||||
|
[36m@@ -17,7 +17,7 @@[m [m$\frac{dy}{dx}=\frac{dy}{dt}{\frac{dt}{dx}}=\frac{ dy }{ dt }{\frac{1}{x}}\Right[m
|
||||||
|
compute 2nd derivative of y wrt to x:[m
|
||||||
|
$\frac{d^2y}{dx^2}=\frac{d^2y}{dt^2} \frac{dt}{dx}\cdot \frac{dt}{dx}+\frac{dy}{dt}{\frac{d^2t}{dx^2}}=\frac{1}{x^2}{\frac{d^2y}{dt^2}}-\frac{\frac{1}{x^2}dy}{dt}$[m
|
||||||
|
$\underset{ \text{Important} }{ x^2{\frac{d^2y}{dx^2}}=\frac{d^2y}{dt^2}-\frac{dy}{dt} }$[m
|
||||||
|
[31m-plugging those derivatives in we get:[m
|
||||||
|
[32m+[m[32mplugging those derivatives in we get: #remember[m
|
||||||
|
$$a\frac{d^2y}{dt^2}+(b-a){\frac{dy}{dt}}+cy(t)=f(e^t)$$[m
|
||||||
|
^ this is a constant coefficient second order non-homogenous equation now! We can solve it now using prior tools.[m
|
||||||
|
[m
|
||||||
|
[1mdiff --git a/content/Convolution (lec 19-20).md b/content/Convolution (lec 19-20).md[m
|
||||||
|
[1mnew file mode 100644[m
|
||||||
|
[1mindex 0000000..30e89f1[m
|
||||||
|
[1m--- /dev/null[m
|
||||||
|
[1m+++ b/content/Convolution (lec 19-20).md[m
|
||||||
|
[36m@@ -0,0 +1,84 @@[m
|
||||||
|
[32m+[m[32m# Convolution[m
|
||||||
|
[32m+[m[32mA convolution is an operation of function, we take two functions, convolute them and get a new function.[m
|
||||||
|
[32m+[m[32mDefinition of convolution between f and g:[m
|
||||||
|
[32m+[m[32m$$(f*g)(t):=\int _{0} ^t f(t-v)g(v)\, dv$$[m
|
||||||
|
[32m+[m[32mproperty 1) $f*g=g*f$[m
|
||||||
|
[32m+[m[32mproof:[m
|
||||||
|
[32m+[m[32m$f*g=\int _{0} ^t f(t-v)g(v)\, \underset{ t-v=u }{ dv }=-\int _{t} ^0 f(u)g(t-u) \, du$[m
|
||||||
|
[32m+[m[32m$=\int _{0} ^t g(t-u)f(u)\, du=g*f \quad \Box$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32mproperty 2) $(f+g)*h=f*h+g*h$[m
|
||||||
|
[32m+[m[32mproperty 3) $(f*g)*h=f*(g*h)$[m
|
||||||
|
[32m+[m[32mproperty 4) $f*0=0$[m
|
||||||
|
[32m+[m[32mproperty 5) $\mathcal{L}\{f*g\}=F(s)G(s)$[m
|
||||||
|
[32m+[m[32mhe will see us tomorrow at 10oclock. ;)[m
|
||||||
|
[32m+[m[32m#end of lec 19[m
|
||||||
|
[32m+[m[32m#start of lec 20[m
|
||||||
|
[32m+[m[32mlets try proving property 5:[m
|
||||||
|
[32m+[m[32mrecall property 5: $\mathcal{L}\{f*g\}=F(s)G(s)$[m
|
||||||
|
[32m+[m[32m$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^t f(t-v)g(v) \, dv \right)\, dt$[m
|
||||||
|
[32m+[m[32m$\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^\infty u(t-v)f(t-v)g(v) \, dv \right)\, dt$[m
|
||||||
|
[32m+[m[32mtwo nested integrals![m
|
||||||
|
[32m+[m[32musing math 209, if both integrals exist, we can exchange the two integrals:[m
|
||||||
|
[32m+[m[32m$=\int _{0}^\infty ( g(v)\underbrace{ \int _{0}^\infty e^{-st}f(t-v)u(t-v)\, dt }_{ \mathcal{L}\{f(t-v)u(t-v)\}=e^{-vs}F(s) } )\, dv$[m
|
||||||
|
[32m+[m[32m$=F(s)\int _{0} ^\infty e^{-rs}g(v)\, dv=F(s)G(s) \quad \Box$[m
|
||||||
|
[32m+[m[32mThis is a very useful fact. We will see how it helps us solve differential equations.[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32mex:[m
|
||||||
|
[32m+[m[32m$$\mathcal{L}^{-1}\left\{ \frac{1}{s^2+1}\frac{1}{s^2+1} \right\}$$[m
|
||||||
|
[32m+[m[32mwe know the inverse of 1/s^2+1 is sin(t):[m
|
||||||
|
[32m+[m[32mthen:[m
|
||||||
|
[32m+[m[32m$=(\sin*\sin)(t)$[m
|
||||||
|
[32m+[m[32m$=\int _{0}^t \sin(t-v)\sin(v)\, dv$[m
|
||||||
|
[32m+[m[32muse identity: $\sin \alpha \sin \beta=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\beta-\alpha)$ DOUBLE CHECK![m
|
||||||
|
[32m+[m[32m$=\frac{1}{2}\int _{0} ^t (\cos(t-2v)-\cos(t))\, dv$[m
|
||||||
|
[32m+[m[32m$=\frac{1}{2}\left( -\frac{1}{2}\sin(t-2v)|^t_{0}-t\cos t \right)=\frac{1}{2}\left( \frac{1}{2}\sin(t)+\frac{1}{2}\sin(t)-t\cos t \right)$[m
|
||||||
|
[32m+[m[32m$$=\frac{1}{2}(\sin t-t\cos t)$$[m
|
||||||
|
[32m+[m[32m#ex[m[41m [m
|
||||||
|
[32m+[m[32msolve the problem:[m
|
||||||
|
[32m+[m[32m$$y'+y-\int _{0} ^t y(v)\sin(t-v) \, dv =-\sin t,\qquad y(0)=1$$[m
|
||||||
|
[32m+[m[32mthis is called an integral-differential equation.[m
|
||||||
|
[32m+[m[32mwe can convert it to a differential equation by taking the derivative of both sides (wrt to dt.):[m
|
||||||
|
[32m+[m[32m$y''+y'-y\sin(t-v)=-\cos t$[m
|
||||||
|
[32m+[m[32mew thats a gross second order linear equation. lets do it another way[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32m$sY-1+Y-\mathcal{L}\{(y*\sin)(t)\}=-\frac{1}{s^2+1}$[m
|
||||||
|
[32m+[m[32m$\left( s+1-\frac{1}{s^2+1}\right)Y(s)=1-\frac{1}{s^2+1}=\frac{s^2}{s^2+1}$[m
|
||||||
|
[32m+[m[32m$\frac{(s^2+1)(s+1)-1}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$[m
|
||||||
|
[32m+[m[32m$\frac{s^3+s^2+s+\cancel{ 1 }-\cancel{ 1 }}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$[m
|
||||||
|
[32m+[m[32m$Y(s)=\frac{s}{s^2+s+1}$[m
|
||||||
|
[32m+[m[32m$y(t)=\mathcal{L}^{-1}\left\{ \frac{s}{s^2+s+1} \right\}=\mathcal{L}^{-1}\{\frac{s}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2}\}$[m
|
||||||
|
[32m+[m[32m$=\mathcal{L}^{-1}\left\{ \frac{s+\frac{1}{2}-\frac{1}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$[m
|
||||||
|
[32m+[m[32m$=e^{-t/2}\cos\left( \frac{\sqrt{ 2 }}{2}t \right)-\frac{1}{2} \frac{2}{\sqrt{ 3 }}\mathcal{L}^{-1}\left\{ \frac{\frac{\sqrt{ 3 }}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$[m
|
||||||
|
[32m+[m[32m$$y(t)=e^{-t/2}\left( \cos \frac{\sqrt{ 3 }}{2}t-\frac{1}{\sqrt{ 3 }} \sin \frac{\sqrt{ 3 }}{2}t\right)$$[m
|
||||||
|
[32m+[m[32mthis is a good algorithmic method now for solving differential equations in software, for example solving circuits.[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32m## Transfer function[m
|
||||||
|
[32m+[m[32mimagine we have the equation:[m
|
||||||
|
[32m+[m[32m$$ay''+by'+cy=g(t), \qquad y(0)=y_{0},\ y'(0)=y_{1}$$[m
|
||||||
|
[32m+[m[32m1)[m
|
||||||
|
[32m+[m[32m$ay''+by'+cy=g(t)$[m
|
||||||
|
[32m+[m[32m$y(0)=y'(0)=0$[m
|
||||||
|
[32m+[m[32mgives a solution $y_{*}$[m
|
||||||
|
[32m+[m[32m2)[m
|
||||||
|
[32m+[m[32m$ay''+by'+cy=0$[m
|
||||||
|
[32m+[m[32m$y(0)=y_{0},\ y'(0)=y_{1}$[m
|
||||||
|
[32m+[m[32mgives a soltuion $y_{**}=c_{1}y_{1}+c_{2}y_{2}$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32mthen by principle of super position:[m
|
||||||
|
[32m+[m[32m$y=y_{*}+y_{**}$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32msolving 1) gives us:[m
|
||||||
|
[32m+[m[32m$as^2Y+bsY+cY=G(s)$[m
|
||||||
|
[32m+[m[32m$Y(s)=\frac{1}{as^2+bs+c}G(s)$ the limit approaches 0 for large s so its a legitimate Laplace transform[m
|
||||||
|
[32m+[m[32mlet $Y(s)=H(s)G(s)$[m
|
||||||
|
[32m+[m[32mwhere $H(s)=\frac{1}{as^2+bs+c}$ and called the transfer function[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32mwe put in $g(t)$ and we get out $Y(s)$. So it "transfers".[m
|
||||||
|
[32m+[m[32m$H(s)=\frac{Y(s)}{G(s)}$[m
|
||||||
|
[32m+[m[32m$\mathcal{L}^{-1}\{H\}=h(t)$ called the impulse response function. We will see why its called that later.[m
|
||||||
|
[32m+[m[32m$y_{*}(t)=(h*g)(t)$[m
|
||||||
|
[32m+[m[32m$y(t)=(h*g)(t)+c_{1}y_{1}+c_{2}y_{2}$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32mhe's finished 8 minutes early, lets go![m
|
||||||
|
[32m+[m[32m#end of lec 20[m
|
||||||
|
\ No newline at end of file[m
|
||||||
|
[1mdiff --git a/content/Laplace transform (lec 14-16).md b/content/Laplace transform (lec 14-16).md[m
|
||||||
|
[1mindex 21c65ed..a6565ba 100644[m
|
||||||
|
[1m--- a/content/Laplace transform (lec 14-16).md[m
|
||||||
|
[1m+++ b/content/Laplace transform (lec 14-16).md[m
|
||||||
|
[36m@@ -17,7 +17,7 @@[m [mcompute the LT of this funny function:[m
|
||||||
|
$f(t)=\begin{cases}1 &\text{if } 0\leq t\leq 1 \\ 2 &\text{if } 1<t\leq 2 \\0 & \text{if } 2<t \end{cases}$[m
|
||||||
|
$F(s)=\int _{0}^1 e^{-st}\, dt+2\int _{1}^2 e^{-st}\, dt+0$[m
|
||||||
|
$F(s)=-\frac{1}{s}e^{-st}|_{t=0}^{t=1}-\frac{2}{s}e^{-st}|_{t=1}^{t=2}$[m
|
||||||
|
[31m-$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{5}(e^{-2s}-e^{-s})$$[m
|
||||||
|
[32m+[m[32m$$F(s)=-\frac{1}{s}(e^{-s}-1)-\frac{2}{s}(e^{-2s}-e^{-s})$$[m
|
||||||
|
We have shown how to compute the LT of a choppy function.[m
|
||||||
|
[m
|
||||||
|
$\mathcal{L}\{\alpha f(t)+\beta g(t)\}=\alpha \mathcal{L}\{f\}+\beta y\mathcal{L}\{g\}$[m
|
||||||
|
[1mdiff --git a/content/Things to remember.md b/content/Things to remember.md[m
|
||||||
|
[1mindex 0440b95..e6b8b5b 100644[m
|
||||||
|
[1m--- a/content/Things to remember.md[m
|
||||||
|
[1m+++ b/content/Things to remember.md[m
|
||||||
|
[36m@@ -6,11 +6,18 @@[m [mAlso remember the following:[m
|
||||||
|
## derivatives of trigs[m
|
||||||
|
$\frac{d}{dx}\tan(x)=sec^2(x)$[m
|
||||||
|
$\frac{d}{dx}sec(x)=sec(x)\tan(x)$[m
|
||||||
|
[31m-...[m
|
||||||
|
[32m+[m[32m$\frac{d}{dx}\csc=-\csc x\cot x$[m
|
||||||
|
[32m+[m[32m$\frac{d}{dx}\cot (x)=-\csc^2(x)$[m
|
||||||
|
## integrals of trigs[m
|
||||||
|
$\int \tan(x) \, dx=\ln\mid \sec(x)\mid+C$[m
|
||||||
|
$\int sec(x) \, dx=\ln\mid sec(x)+\tan(x)\mid+C$[m
|
||||||
|
[31m-...[m
|
||||||
|
[32m+[m[32m$\int \csc x \, dx=-\ln|\csc x+\cot x|+C$[m
|
||||||
|
[32m+[m[32m$\int \cot x \, dx=-\ln|\csc x|+C$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m[32m## Integrals:[m
|
||||||
|
[32m+[m[32m$\int \frac{1}{1+x^2} \, dx=\arctan(x)+C$[m
|
||||||
|
[32m+[m
|
||||||
|
[32m+[m
|
||||||
|
## integration by parts[m
|
||||||
|
LIATE -> log, inv trig, algebraic, trig, exp[m
|
||||||
|
set u to the first in the list above[m
|
Loading…
Reference in New Issue