This doesn't look like anything useful, but later on we will learn how it is.
Btw, an operator is something that takes in a function and spits out a new function. For example, integration is a kind of operator.
Here are some trivial example computations:
$\mathcal{L}\{0\}=0$ Look at your bank account, integrate 0 you still get 0 :D
$\mathcal{L}\{1\}=\int_{0}^\infty e^{-st} \, dt=-\frac{1}{s}e^{-st}|_{0}^\infty=\frac{1}{s}$ if s>0
$\mathcal{L}\{e^{at}\}$=$\int_{0}^{\infty} e^{at}e^{-st}\, dt=\int_{0}^{\infty}e^{-(s-a)t}dt=\frac{1}{s-a}$ if $s-a>0$
$\mathcal{L}\{\sin bt\}=\int _{0}^{\infty}e^{-st}\sin(bt) \, dt=\frac{b}{s^2+b^2}$ by integration by parts
similarly can be done for cos, but we have run out of time. (Don't worry, you will find these properties and many more on the table provided in the next lectures)
Def: $f(t)$ is piecewise continuous on an interval $I$ if $f(t)$ is continuous on $I$, except possibly at a <u>finite</u> number of points of <u>jump</u> discontinuity
$\mathcal{L}\{t^n\}= \frac{n!}{s^{n+1}}$ (can be proven by induction)
today covers all midterm material. Yay!
#end of lec 15
#start of lec 16
He advises us to learn the table of common LT's, however a sheet will be provided for the exam.
#ex #LT
lets try to compute the LT of:
$\mathcal{L}\{t\cos (t)e^t\}= ?$
Look at the table, which one would be useful? (the bottom one?)
We know $\mathcal{L}\{t^nf(t)\}=(-1)^n \frac{d^nF}{ds^n}$ this property was shown last lecture, can be proven by induction. It's good to learn this by heart.
This can be proven rather easily due to the linearity of the forward transform. (wasn't done in class unfortunately.)
#ex
$\mathcal{L}^{-1}\left\{ \frac{1}{s^5}+\frac{3}{(2s+5)^2}+\frac{1}{s^2+4s+8}+ \frac{{s-1}}{s^2+2s+10} \right\}$ notice that all these terms approach 0 as s approaches inf.
using linearity:
second term doesn't look like its in the table, 3rd term looks like second last row
it's kinda fun, try to match each term with something in the table, like a puzzle.
We are done.
#ex #inv_LT
$\mathcal{L}^{-1}\{\frac{1}{(s-3)(s^2+2s+2)}\}$ notice the numerator is at least one degree lower than the denominator. The limit of the overall term is zero as s->inf
it doesn't look like anything in the table, can we factor the denominator? not really, they have complex solutions. So maybe split the terms using partial fractions!