539 lines
10 KiB
HTML
539 lines
10 KiB
HTML
|
<!DOCTYPE html>
|
||
|
<html lang="en">
|
||
|
|
||
|
<head>
|
||
|
<meta charset="utf-8" />
|
||
|
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
||
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||
|
<meta name="description" content="Bernoulli’s equation:
|
||
|
$$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$
|
||
|
(I’m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation.
|
||
|
Bernoulli’s …">
|
||
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
||
|
<meta name="mobile-web-app-capable" content="yes">
|
||
|
<meta name="apple-mobile-web-app-status-bar-style" content="default">
|
||
|
|
||
|
|
||
|
<link rel="manifest" href="./manifest.json"><meta property="og:title" content="" />
|
||
|
<meta property="og:description" content="Bernoulli’s equation: $$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$ (I’m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation. Bernoulli’s equations are important as you will see it in biology and in engineering.
|
||
|
If y is + then y(x)=0 is a solution to the equation: $\frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0$ Let’s move the y to the LHS: $y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$ notice that y(x)=0 is no longer a solution!" />
|
||
|
<meta property="og:type" content="article" />
|
||
|
<meta property="og:url" content="/bernoulli-de-lec-3.html" />
|
||
|
|
||
|
<meta name="twitter:card" content="summary"/>
|
||
|
<meta name="twitter:title" content=""/>
|
||
|
<meta name="twitter:description" content="Bernoulli’s equation: $$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$ (I’m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation. Bernoulli’s equations are important as you will see it in biology and in engineering.
|
||
|
If y is + then y(x)=0 is a solution to the equation: $\frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0$ Let’s move the y to the LHS: $y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$ notice that y(x)=0 is no longer a solution!"/>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<title>Bernoulli DE (lec 3) - My New Hugo Site</title>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<link rel="stylesheet" href="./css/main.min.203106d73d4370d04c60441691746dd8e021e38bbbc83f65f636dc8ae886a9f3.css" />
|
||
|
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<script src="./js/main.min.2dd2f7073384163751d1886bcb921097bc2af8ec60cb37deebf49f61a0eca5c3.js" integrity="sha256-LdL3BzOEFjdR0Yhry5IQl7wq+Oxgyzfe6/SfYaDspcM="></script>
|
||
|
|
||
|
|
||
|
|
||
|
</head>
|
||
|
|
||
|
<body>
|
||
|
|
||
|
|
||
|
<style>
|
||
|
search-menu {
|
||
|
display: block;
|
||
|
}
|
||
|
|
||
|
#search {
|
||
|
height: 100%;
|
||
|
width: 0;
|
||
|
position: fixed;
|
||
|
background: var(--background-search);
|
||
|
z-index: 1;
|
||
|
top: 0;
|
||
|
left: 0;
|
||
|
border-right: 1px solid var(--separator-color);
|
||
|
overflow-x: hidden;
|
||
|
overflow-y: auto;
|
||
|
opacity: 0;
|
||
|
|
||
|
-ms-overflow-style: none;
|
||
|
scrollbar-width: none;
|
||
|
}
|
||
|
|
||
|
#search::-webkit-scrollbar { display: none; }
|
||
|
|
||
|
#search-header {
|
||
|
padding: 12px;
|
||
|
position: fixed;
|
||
|
padding-left: 12px;
|
||
|
padding-right: 12px;
|
||
|
background: var(--background-search);
|
||
|
width: 250px;
|
||
|
opacity: 1;
|
||
|
height: 50px;
|
||
|
z-index: 2;
|
||
|
border-bottom: 1px solid var(--separator-color);
|
||
|
}
|
||
|
|
||
|
#search .input-container {
|
||
|
position: relative
|
||
|
}
|
||
|
|
||
|
#search-input {
|
||
|
width: 100%;
|
||
|
height: 24px;
|
||
|
border: 1px solid var(--separator-color);
|
||
|
border-radius: 4px;
|
||
|
padding-left: 16px;
|
||
|
background-color: white;
|
||
|
display: inline-block;
|
||
|
}
|
||
|
|
||
|
#search-input:focus {
|
||
|
border: 1px solid var(--search-field-focused-color);
|
||
|
}
|
||
|
|
||
|
#search-header .input-container .search-icon {
|
||
|
position: absolute;
|
||
|
top: 6px;
|
||
|
left: 8px;
|
||
|
fill: darkGray;
|
||
|
}
|
||
|
|
||
|
#search-results img {
|
||
|
width: 122px;
|
||
|
height: 76px;
|
||
|
border: 1px solid var(--separator-color);
|
||
|
object-fit: cover;
|
||
|
}
|
||
|
|
||
|
#search-results {
|
||
|
margin-top: 50px;
|
||
|
overflow: auto;
|
||
|
height: 100%;
|
||
|
}
|
||
|
|
||
|
#search-results a {
|
||
|
width: 100%;
|
||
|
padding-left: 25px;
|
||
|
padding-right: 25px;
|
||
|
padding-top: 12px;
|
||
|
padding-bottom: 12px;
|
||
|
display: inline-block;
|
||
|
|
||
|
color: var(--text-base-color);
|
||
|
border-bottom: 1px solid var(--separator-color);
|
||
|
border-left: 6px solid var(--background-search);
|
||
|
|
||
|
}
|
||
|
|
||
|
#search-results a:first-child:hover, a:first-child:focus, .selected {
|
||
|
outline: 0;
|
||
|
background-color: var(--note-table-cell-selected-color);
|
||
|
border-left: 6px solid var(--note-table-cell-ribbon-color) !important;
|
||
|
}
|
||
|
|
||
|
|
||
|
#search-results li { text-indent: 0; }
|
||
|
#search-results li:before,
|
||
|
#search-results h1:before,
|
||
|
#search-results h2:before,
|
||
|
#search-results h3:before,
|
||
|
#search-results h4:before,
|
||
|
#search-results h5:before,
|
||
|
#search-results h6:before {
|
||
|
content: "";
|
||
|
visibility: hidden;
|
||
|
display: none;
|
||
|
}
|
||
|
</style>
|
||
|
|
||
|
|
||
|
<search-menu id="search" data-turbolinks-permanent>
|
||
|
<header id="search-header">
|
||
|
<div class="input-container">
|
||
|
<svg aria-hidden="true" style="" class="search-icon" width="12" height="12" viewBox="0 0 18 18">
|
||
|
<path d="M18 16.5l-5.14-5.18h-.35a7 7 0 10-1.19 1.19v.35L16.5 18l1.5-1.5zM12 7A5 5 0 112 7a5 5 0 0110 0z">
|
||
|
</path>
|
||
|
</svg>
|
||
|
|
||
|
<input type="search" autocomplete="off" id="search-input" onkeyup="performSearch()" tabindex="0" placeholder="Search note">
|
||
|
|
||
|
|
||
|
|
||
|
</div>
|
||
|
</header>
|
||
|
|
||
|
<ul id="search-results"></ul>
|
||
|
</search-menu>
|
||
|
<script>
|
||
|
</script>
|
||
|
|
||
|
<style>
|
||
|
#toolbar {
|
||
|
position: fixed;
|
||
|
top: 0;
|
||
|
right: 0;
|
||
|
|
||
|
width: 60px;
|
||
|
height: 100%;
|
||
|
|
||
|
display: flex;
|
||
|
flex-direction: column;
|
||
|
justify-content: flex-start;
|
||
|
align-items: center;
|
||
|
|
||
|
transition: 1s;
|
||
|
opacity: 0.5;
|
||
|
|
||
|
padding: 18px 0px 18px 0px;
|
||
|
}
|
||
|
|
||
|
#toolbar:hover {
|
||
|
opacity: 1;
|
||
|
}
|
||
|
|
||
|
#close-nav-icon {
|
||
|
display: none;
|
||
|
}
|
||
|
|
||
|
</style>
|
||
|
|
||
|
<aside id="toolbar">
|
||
|
<span style="cursor:pointer" id="open-nav-icon" onclick="handleNavVisibility()">
|
||
|
<svg width="18" height="18" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle fill="none" stroke="var(--text-base-color)" stroke-width="1.1" cx="9" cy="9" r="7"></circle><path fill="none" stroke="var(--text-base-color)" stroke-width="1.1" d="M14,14 L18,18 L14,14 Z"></path></svg>
|
||
|
</span>
|
||
|
|
||
|
<span onclick="imageMode()" style="cursor:pointer;margin-top:16px;">
|
||
|
<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle cx="16.1" cy="6.1" r="1.1"></circle><rect fill="none" stroke="var(--text-base-color" x=".5" y="2.5" width="19" height="15"></rect><polyline fill="none" stroke="var(--text-base-color" stroke-width="1.01" points="4,13 8,9 13,14"></polyline><polyline fill="none" stroke="var(--text-base-color)" stroke-width="1.01" points="11,12 12.5,10.5 16,14"></polyline></svg>
|
||
|
</span>
|
||
|
</aside>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<main id="main">
|
||
|
|
||
|
<div id="note-wrapper" class="note-wrapper">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<h1 id="bernoullis-equation">Bernoulli’s equation:</h1>
|
||
|
<h3 id="frac-dy--dx--pxyqxyn-quadquad-ninmathbbr">$$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$</h3>
|
||
|
<p>(I’m calling this
|
||
|
<a class="hashtag" onclick="focusTag(this)">de_b_type1)</a> It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation.
|
||
|
Bernoulli’s equations are important as you will see it in biology and in engineering.</p>
|
||
|
<p>If y is + then y(x)=0 is a solution to the equation:
|
||
|
$\frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0$
|
||
|
Let’s move the y to the LHS:
|
||
|
$y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$
|
||
|
notice that y(x)=0 is no longer a solution! It was lost due to dividing by zero. So from here on out we will have to remember to add it back in our final answers.
|
||
|
let $y^{1-n}=u$
|
||
|
Differentiating this with respect to x gives us:
|
||
|
$(1-n)y^{-n}\frac{ dy }{ dx }=\frac{du}{dx}$</p>
|
||
|
<blockquote>
|
||
|
<p>notice that when n=1 the above turns into a linear equation:
|
||
|
$0=\frac{ du }{ dx }$
|
||
|
$y^{1-n}=u=0+C$
|
||
|
1=C
|
||
|
Hold on I dont think I did the above correctly. Anyways.
|
||
|
So we consider that $n\ne 0,1$ for Bernoulli’s equations as we can solve those cases with earlier tools.</p>
|
||
|
</blockquote>
|
||
|
<p>$y^{-n}\frac{ dy }{ dx }=\frac{ du }{ dx }{\frac{1}{1-n}}$
|
||
|
substituting in we get:
|
||
|
$y^{-n}\frac{ dy }{ dx }+P(x)u=Q(x)=\frac{ du }{ dx }{\frac{1}{1-n}+P(x)u}$</p>
|
||
|
<p>and we get a linear equation again: (Handy formula if you wanna solve specific Bernoulli equations quick.)
|
||
|
$$\frac{1}{1-n}\frac{ du }{ dx }+P(x)=Q(x)\quad \Box$$</p>
|
||
|
<hr>
|
||
|
<h1 id="examples-of-bernoullis-equation">Examples of Bernoulli’s equation:</h1>
|
||
|
<p><a class="hashtag" onclick="focusTag(this)">ex</a>
|
||
|
<a class="hashtag" onclick="focusTag(this)">de_b_type1</a> Find the general solution to:
|
||
|
$y'+y=(xy)^2$
|
||
|
Looks like a Bernoulli equation because when we distribute the $^2$ we get $x^2y^2$ on the RHS. This also tells us that n=2
|
||
|
$y'+y=x^2y^2$
|
||
|
$y’y^{-2}+y^{-1}=x^2$</p>
|
||
|
<blockquote>
|
||
|
<p>Note that we lost the y(x)=0 solution here, we will have to add it back in the end.</p>
|
||
|
</blockquote>
|
||
|
<p>let $u=y^{1-n}=y^{-1}$
|
||
|
Differentiating wrt. x we get: $\frac{du}{dx}=-y^{-2}{\frac{dy}{dx}}$
|
||
|
$y^{-2}{\frac{dy}{dx}=-\frac{ du }{ dx }}$
|
||
|
$y^{-2}{\frac{dy}{dx}+y^{-1}=-\frac{ du }{ dx }}+y^{-1}$
|
||
|
${x^2=-\frac{ du }{ dx }}+y^{-1}$
|
||
|
$x^2=-\frac{du}{dx}+u$
|
||
|
$\frac{du}{dx}-u=-x^2$
|
||
|
Yay we have a linear equation now! We can solve it using the techniques & formulas we learned for them.
|
||
|
let $P(x)=-1 \quad Q(x)=-x^2 \qquad I(x)=e^{\int -1 , dx}=e^{-x}$
|
||
|
$u=-e^{x}\int e^{-x}x^2 , dx$
|
||
|
LIATE log, inv, alg, trig, exp
|
||
|
$\int fg' , dx=fg-\int f’g , dx$
|
||
|
let $f=x^2 \qquad f'=2x \qquad g'=e^{-x} \qquad g=-e^{-x}$
|
||
|
$u=-e^{x}\left( x^2(-e^{-x})-\int 2x(-e^{-x}) , dx \right)$
|
||
|
$u=-e^{x}\left( -x^2e^{-x}+2\int xe^{-x} , dx \right)$
|
||
|
let $f=x \qquad f'=1 \qquad g'=e^{-x} \qquad g=-e^{-x}$
|
||
|
$u=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-\int -e^{-x} , dx \right) \right)$
|
||
|
$\frac{1}{y}=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-e^{-x} +C\right) \right)$
|
||
|
$\frac{1}{y}=x^2+2(x+1+Ce^x)$
|
||
|
$\frac{1}{y}=x^2+2x+2+Ce^x$
|
||
|
The general solution to the DE is:
|
||
|
$y(x)=\frac{1}{x^2+2x+2+Ce^x}$ as well as $y(x)=0$</p>
|
||
|
<hr>
|
||
|
<p><a class="hashtag" onclick="focusTag(this)">end</a> of lecture 3</p>
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<h3>Referenced in</h3>
|
||
|
|
||
|
<ul>
|
||
|
<li>No backlinks found</li>
|
||
|
|
||
|
</ul>
|
||
|
|
||
|
|
||
|
|
||
|
</div>
|
||
|
</main>
|
||
|
|
||
|
<script type="text/javascript">
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</script>
|
||
|
|
||
|
</body>
|
||
|
</html>
|