MATH201/public/bernoulli-de-lec-3.html

539 lines
10 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Bernoulli&rsquo;s equation:
$$\frac{ dy }{ dx } &#43;P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$
(I&rsquo;m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation.
Bernoulli&rsquo;s …">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="default">
<link rel="manifest" href="./manifest.json"><meta property="og:title" content="" />
<meta property="og:description" content="Bernoulli&rsquo;s equation: $$\frac{ dy }{ dx } &#43;P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$ (I&rsquo;m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation. Bernoulli&rsquo;s equations are important as you will see it in biology and in engineering.
If y is &#43; then y(x)=0 is a solution to the equation: $\frac{dy}{dx}&#43;0=0\quad\Rightarrow \quad0=0$ Let&rsquo;s move the y to the LHS: $y^{-n}\frac{ dy }{ dx }&#43;P(x)y^{1-n}=Q(x)$ notice that y(x)=0 is no longer a solution!" />
<meta property="og:type" content="article" />
<meta property="og:url" content="/bernoulli-de-lec-3.html" />
<meta name="twitter:card" content="summary"/>
<meta name="twitter:title" content=""/>
<meta name="twitter:description" content="Bernoulli&rsquo;s equation: $$\frac{ dy }{ dx } &#43;P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$ (I&rsquo;m calling this #de_b_type1) It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation. Bernoulli&rsquo;s equations are important as you will see it in biology and in engineering.
If y is &#43; then y(x)=0 is a solution to the equation: $\frac{dy}{dx}&#43;0=0\quad\Rightarrow \quad0=0$ Let&rsquo;s move the y to the LHS: $y^{-n}\frac{ dy }{ dx }&#43;P(x)y^{1-n}=Q(x)$ notice that y(x)=0 is no longer a solution!"/>
<title>Bernoulli DE (lec 3) - My New Hugo Site</title>
<link rel="stylesheet" href="./css/main.min.203106d73d4370d04c60441691746dd8e021e38bbbc83f65f636dc8ae886a9f3.css" />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="./js/main.min.2dd2f7073384163751d1886bcb921097bc2af8ec60cb37deebf49f61a0eca5c3.js" integrity="sha256-LdL3BzOEFjdR0Yhry5IQl7wq&#43;Oxgyzfe6/SfYaDspcM="></script>
</head>
<body>
<style>
search-menu {
display: block;
}
#search {
height: 100%;
width: 0;
position: fixed;
background: var(--background-search);
z-index: 1;
top: 0;
left: 0;
border-right: 1px solid var(--separator-color);
overflow-x: hidden;
overflow-y: auto;
opacity: 0;
-ms-overflow-style: none;
scrollbar-width: none;
}
#search::-webkit-scrollbar { display: none; }
#search-header {
padding: 12px;
position: fixed;
padding-left: 12px;
padding-right: 12px;
background: var(--background-search);
width: 250px;
opacity: 1;
height: 50px;
z-index: 2;
border-bottom: 1px solid var(--separator-color);
}
#search .input-container {
position: relative
}
#search-input {
width: 100%;
height: 24px;
border: 1px solid var(--separator-color);
border-radius: 4px;
padding-left: 16px;
background-color: white;
display: inline-block;
}
#search-input:focus {
border: 1px solid var(--search-field-focused-color);
}
#search-header .input-container .search-icon {
position: absolute;
top: 6px;
left: 8px;
fill: darkGray;
}
#search-results img {
width: 122px;
height: 76px;
border: 1px solid var(--separator-color);
object-fit: cover;
}
#search-results {
margin-top: 50px;
overflow: auto;
height: 100%;
}
#search-results a {
width: 100%;
padding-left: 25px;
padding-right: 25px;
padding-top: 12px;
padding-bottom: 12px;
display: inline-block;
color: var(--text-base-color);
border-bottom: 1px solid var(--separator-color);
border-left: 6px solid var(--background-search);
}
#search-results a:first-child:hover, a:first-child:focus, .selected {
outline: 0;
background-color: var(--note-table-cell-selected-color);
border-left: 6px solid var(--note-table-cell-ribbon-color) !important;
}
#search-results li { text-indent: 0; }
#search-results li:before,
#search-results h1:before,
#search-results h2:before,
#search-results h3:before,
#search-results h4:before,
#search-results h5:before,
#search-results h6:before {
content: "";
visibility: hidden;
display: none;
}
</style>
<search-menu id="search" data-turbolinks-permanent>
<header id="search-header">
<div class="input-container">
<svg aria-hidden="true" style="" class="search-icon" width="12" height="12" viewBox="0 0 18 18">
<path d="M18 16.5l-5.14-5.18h-.35a7 7 0 10-1.19 1.19v.35L16.5 18l1.5-1.5zM12 7A5 5 0 112 7a5 5 0 0110 0z">
</path>
</svg>
<input type="search" autocomplete="off" id="search-input" onkeyup="performSearch()" tabindex="0" placeholder="Search note">
</div>
</header>
<ul id="search-results"></ul>
</search-menu>
<script>
</script>
<style>
#toolbar {
position: fixed;
top: 0;
right: 0;
width: 60px;
height: 100%;
display: flex;
flex-direction: column;
justify-content: flex-start;
align-items: center;
transition: 1s;
opacity: 0.5;
padding: 18px 0px 18px 0px;
}
#toolbar:hover {
opacity: 1;
}
#close-nav-icon {
display: none;
}
</style>
<aside id="toolbar">
<span style="cursor:pointer" id="open-nav-icon" onclick="handleNavVisibility()">
<svg width="18" height="18" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle fill="none" stroke="var(--text-base-color)" stroke-width="1.1" cx="9" cy="9" r="7"></circle><path fill="none" stroke="var(--text-base-color)" stroke-width="1.1" d="M14,14 L18,18 L14,14 Z"></path></svg>
</span>
<span onclick="imageMode()" style="cursor:pointer;margin-top:16px;">
<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle cx="16.1" cy="6.1" r="1.1"></circle><rect fill="none" stroke="var(--text-base-color" x=".5" y="2.5" width="19" height="15"></rect><polyline fill="none" stroke="var(--text-base-color" stroke-width="1.01" points="4,13 8,9 13,14"></polyline><polyline fill="none" stroke="var(--text-base-color)" stroke-width="1.01" points="11,12 12.5,10.5 16,14"></polyline></svg>
</span>
</aside>
<main id="main">
<div id="note-wrapper" class="note-wrapper">
<h1 id="bernoullis-equation">Bernoulli&rsquo;s equation:</h1>
<h3 id="frac-dy--dx--pxyqxyn-quadquad-ninmathbbr">$$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad,\quad n\in\mathbb{R}$$</h3>
<p>(I&rsquo;m calling this
<a class="hashtag" onclick="focusTag(this)">de_b_type1)</a> It looks almost like a linear equation! In fact if n=0 it is by definition. We will see further that if n=1 you also still get a linear equation.
Bernoulli&rsquo;s equations are important as you will see it in biology and in engineering.</p>
<p>If y is + then y(x)=0 is a solution to the equation:
$\frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0$
Let&rsquo;s move the y to the LHS:
$y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$
notice that y(x)=0 is no longer a solution! It was lost due to dividing by zero. So from here on out we will have to remember to add it back in our final answers.
let $y^{1-n}=u$
Differentiating this with respect to x gives us:
$(1-n)y^{-n}\frac{ dy }{ dx }=\frac{du}{dx}$</p>
<blockquote>
<p>notice that when n=1 the above turns into a linear equation:
$0=\frac{ du }{ dx }$
$y^{1-n}=u=0+C$
1=C
Hold on I dont think I did the above correctly. Anyways.
So we consider that $n\ne 0,1$ for Bernoulli&rsquo;s equations as we can solve those cases with earlier tools.</p>
</blockquote>
<p>$y^{-n}\frac{ dy }{ dx }=\frac{ du }{ dx }{\frac{1}{1-n}}$
substituting in we get:
$y^{-n}\frac{ dy }{ dx }+P(x)u=Q(x)=\frac{ du }{ dx }{\frac{1}{1-n}+P(x)u}$</p>
<p>and we get a linear equation again: (Handy formula if you wanna solve specific Bernoulli equations quick.)
$$\frac{1}{1-n}\frac{ du }{ dx }+P(x)=Q(x)\quad \Box$$</p>
<hr>
<h1 id="examples-of-bernoullis-equation">Examples of Bernoulli&rsquo;s equation:</h1>
<p><a class="hashtag" onclick="focusTag(this)">ex</a>
<a class="hashtag" onclick="focusTag(this)">de_b_type1</a> Find the general solution to:
$y'+y=(xy)^2$
Looks like a Bernoulli equation because when we distribute the $^2$ we get $x^2y^2$ on the RHS. This also tells us that n=2
$y'+y=x^2y^2$
$y&rsquo;y^{-2}+y^{-1}=x^2$</p>
<blockquote>
<p>Note that we lost the y(x)=0 solution here, we will have to add it back in the end.</p>
</blockquote>
<p>let $u=y^{1-n}=y^{-1}$
Differentiating wrt. x we get: $\frac{du}{dx}=-y^{-2}{\frac{dy}{dx}}$
$y^{-2}{\frac{dy}{dx}=-\frac{ du }{ dx }}$
$y^{-2}{\frac{dy}{dx}+y^{-1}=-\frac{ du }{ dx }}+y^{-1}$
${x^2=-\frac{ du }{ dx }}+y^{-1}$
$x^2=-\frac{du}{dx}+u$
$\frac{du}{dx}-u=-x^2$
Yay we have a linear equation now! We can solve it using the techniques &amp; formulas we learned for them.
let $P(x)=-1 \quad Q(x)=-x^2 \qquad I(x)=e^{\int -1 , dx}=e^{-x}$
$u=-e^{x}\int e^{-x}x^2 , dx$
LIATE log, inv, alg, trig, exp
$\int fg' , dx=fg-\int f&rsquo;g , dx$
let $f=x^2 \qquad f'=2x \qquad g'=e^{-x} \qquad g=-e^{-x}$
$u=-e^{x}\left( x^2(-e^{-x})-\int 2x(-e^{-x}) , dx \right)$
$u=-e^{x}\left( -x^2e^{-x}+2\int xe^{-x} , dx \right)$
let $f=x \qquad f'=1 \qquad g'=e^{-x} \qquad g=-e^{-x}$
$u=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-\int -e^{-x} , dx \right) \right)$
$\frac{1}{y}=-e^x\left( -x^2e^{-x}+2\left( -xe^{-x}-e^{-x} +C\right) \right)$
$\frac{1}{y}=x^2+2(x+1+Ce^x)$
$\frac{1}{y}=x^2+2x+2+Ce^x$
The general solution to the DE is:
$y(x)=\frac{1}{x^2+2x+2+Ce^x}$ as well as $y(x)=0$</p>
<hr>
<p><a class="hashtag" onclick="focusTag(this)">end</a> of lecture 3</p>
<h3>Referenced in</h3>
<ul>
<li>No backlinks found</li>
</ul>
</div>
</main>
<script type="text/javascript">
</script>
</body>
</html>