forked from Sasserisop/MATH201
520 lines
10 KiB
HTML
520 lines
10 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en">
|
|
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
<meta name="description" content="#start of lecture 1
|
|
Intro (Newton example):
|
|
Newton example where we find the equations to describe a falling object using differential equations (DE’s)
|
|
We know $F=ma$
|
|
$F=m\frac{dv}{dt}=mg-kv$ <- we account for air resistance here. We can approximate the force of air resistance is …">
|
|
<meta name="apple-mobile-web-app-capable" content="yes">
|
|
<meta name="mobile-web-app-capable" content="yes">
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="default">
|
|
|
|
|
|
<link rel="manifest" href="./manifest.json"><meta property="og:title" content="" />
|
|
<meta property="og:description" content="#start of lecture 1
|
|
Intro (Newton example): Newton example where we find the equations to describe a falling object using differential equations (DE’s) We know $F=ma$ $F=m\frac{dv}{dt}=mg-kv$ <- we account for air resistance here. We can approximate the force of air resistance is proportional to the speed times a constant. We can rearrange and solve it as it is a separable DE: $\frac{dv}{mg-kv}=\frac{dt}{m}$ integrating both sides: $\int \frac{dv}{mg-kv}=\frac{t}{m}+C$ let $u=mg-kv \quad du=-kdv$ $\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}+C$ Very cool, but I want the velocity as a function of time, isolate v $\ln\mid mg-kv\mid=-\frac{kt}{m}+C$ $\mid mg-kv\mid=e^{\frac{-kt}{m}+C}=e^{\frac{-kt}{m}}e^C$ $e^C$ is a + constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be + or - $mg-kv=Ae^{\frac{-kt}{m}}$ so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$" />
|
|
<meta property="og:type" content="article" />
|
|
<meta property="og:url" content="/seperable-de-lec-1.html" />
|
|
|
|
<meta name="twitter:card" content="summary"/>
|
|
<meta name="twitter:title" content=""/>
|
|
<meta name="twitter:description" content="#start of lecture 1
|
|
Intro (Newton example): Newton example where we find the equations to describe a falling object using differential equations (DE’s) We know $F=ma$ $F=m\frac{dv}{dt}=mg-kv$ <- we account for air resistance here. We can approximate the force of air resistance is proportional to the speed times a constant. We can rearrange and solve it as it is a separable DE: $\frac{dv}{mg-kv}=\frac{dt}{m}$ integrating both sides: $\int \frac{dv}{mg-kv}=\frac{t}{m}+C$ let $u=mg-kv \quad du=-kdv$ $\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}+C$ Very cool, but I want the velocity as a function of time, isolate v $\ln\mid mg-kv\mid=-\frac{kt}{m}+C$ $\mid mg-kv\mid=e^{\frac{-kt}{m}+C}=e^{\frac{-kt}{m}}e^C$ $e^C$ is a + constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be + or - $mg-kv=Ae^{\frac{-kt}{m}}$ so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$"/>
|
|
|
|
|
|
|
|
|
|
|
|
<title>Seperable DE (lec 1) - My New Hugo Site</title>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<link rel="stylesheet" href="./css/main.min.203106d73d4370d04c60441691746dd8e021e38bbbc83f65f636dc8ae886a9f3.css" />
|
|
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<script src="./js/main.min.2dd2f7073384163751d1886bcb921097bc2af8ec60cb37deebf49f61a0eca5c3.js" integrity="sha256-LdL3BzOEFjdR0Yhry5IQl7wq+Oxgyzfe6/SfYaDspcM="></script>
|
|
|
|
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
|
|
<style>
|
|
search-menu {
|
|
display: block;
|
|
}
|
|
|
|
#search {
|
|
height: 100%;
|
|
width: 0;
|
|
position: fixed;
|
|
background: var(--background-search);
|
|
z-index: 1;
|
|
top: 0;
|
|
left: 0;
|
|
border-right: 1px solid var(--separator-color);
|
|
overflow-x: hidden;
|
|
overflow-y: auto;
|
|
opacity: 0;
|
|
|
|
-ms-overflow-style: none;
|
|
scrollbar-width: none;
|
|
}
|
|
|
|
#search::-webkit-scrollbar { display: none; }
|
|
|
|
#search-header {
|
|
padding: 12px;
|
|
position: fixed;
|
|
padding-left: 12px;
|
|
padding-right: 12px;
|
|
background: var(--background-search);
|
|
width: 250px;
|
|
opacity: 1;
|
|
height: 50px;
|
|
z-index: 2;
|
|
border-bottom: 1px solid var(--separator-color);
|
|
}
|
|
|
|
#search .input-container {
|
|
position: relative
|
|
}
|
|
|
|
#search-input {
|
|
width: 100%;
|
|
height: 24px;
|
|
border: 1px solid var(--separator-color);
|
|
border-radius: 4px;
|
|
padding-left: 16px;
|
|
background-color: white;
|
|
display: inline-block;
|
|
}
|
|
|
|
#search-input:focus {
|
|
border: 1px solid var(--search-field-focused-color);
|
|
}
|
|
|
|
#search-header .input-container .search-icon {
|
|
position: absolute;
|
|
top: 6px;
|
|
left: 8px;
|
|
fill: darkGray;
|
|
}
|
|
|
|
#search-results img {
|
|
width: 122px;
|
|
height: 76px;
|
|
border: 1px solid var(--separator-color);
|
|
object-fit: cover;
|
|
}
|
|
|
|
#search-results {
|
|
margin-top: 50px;
|
|
overflow: auto;
|
|
height: 100%;
|
|
}
|
|
|
|
#search-results a {
|
|
width: 100%;
|
|
padding-left: 25px;
|
|
padding-right: 25px;
|
|
padding-top: 12px;
|
|
padding-bottom: 12px;
|
|
display: inline-block;
|
|
|
|
color: var(--text-base-color);
|
|
border-bottom: 1px solid var(--separator-color);
|
|
border-left: 6px solid var(--background-search);
|
|
|
|
}
|
|
|
|
#search-results a:first-child:hover, a:first-child:focus, .selected {
|
|
outline: 0;
|
|
background-color: var(--note-table-cell-selected-color);
|
|
border-left: 6px solid var(--note-table-cell-ribbon-color) !important;
|
|
}
|
|
|
|
|
|
#search-results li { text-indent: 0; }
|
|
#search-results li:before,
|
|
#search-results h1:before,
|
|
#search-results h2:before,
|
|
#search-results h3:before,
|
|
#search-results h4:before,
|
|
#search-results h5:before,
|
|
#search-results h6:before {
|
|
content: "";
|
|
visibility: hidden;
|
|
display: none;
|
|
}
|
|
</style>
|
|
|
|
|
|
<search-menu id="search" data-turbolinks-permanent>
|
|
<header id="search-header">
|
|
<div class="input-container">
|
|
<svg aria-hidden="true" style="" class="search-icon" width="12" height="12" viewBox="0 0 18 18">
|
|
<path d="M18 16.5l-5.14-5.18h-.35a7 7 0 10-1.19 1.19v.35L16.5 18l1.5-1.5zM12 7A5 5 0 112 7a5 5 0 0110 0z">
|
|
</path>
|
|
</svg>
|
|
|
|
<input type="search" autocomplete="off" id="search-input" onkeyup="performSearch()" tabindex="0" placeholder="Search note">
|
|
|
|
|
|
|
|
</div>
|
|
</header>
|
|
|
|
<ul id="search-results"></ul>
|
|
</search-menu>
|
|
<script>
|
|
</script>
|
|
|
|
<style>
|
|
#toolbar {
|
|
position: fixed;
|
|
top: 0;
|
|
right: 0;
|
|
|
|
width: 60px;
|
|
height: 100%;
|
|
|
|
display: flex;
|
|
flex-direction: column;
|
|
justify-content: flex-start;
|
|
align-items: center;
|
|
|
|
transition: 1s;
|
|
opacity: 0.5;
|
|
|
|
padding: 18px 0px 18px 0px;
|
|
}
|
|
|
|
#toolbar:hover {
|
|
opacity: 1;
|
|
}
|
|
|
|
#close-nav-icon {
|
|
display: none;
|
|
}
|
|
|
|
</style>
|
|
|
|
<aside id="toolbar">
|
|
<span style="cursor:pointer" id="open-nav-icon" onclick="handleNavVisibility()">
|
|
<svg width="18" height="18" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle fill="none" stroke="var(--text-base-color)" stroke-width="1.1" cx="9" cy="9" r="7"></circle><path fill="none" stroke="var(--text-base-color)" stroke-width="1.1" d="M14,14 L18,18 L14,14 Z"></path></svg>
|
|
</span>
|
|
|
|
<span onclick="imageMode()" style="cursor:pointer;margin-top:16px;">
|
|
<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><circle cx="16.1" cy="6.1" r="1.1"></circle><rect fill="none" stroke="var(--text-base-color" x=".5" y="2.5" width="19" height="15"></rect><polyline fill="none" stroke="var(--text-base-color" stroke-width="1.01" points="4,13 8,9 13,14"></polyline><polyline fill="none" stroke="var(--text-base-color)" stroke-width="1.01" points="11,12 12.5,10.5 16,14"></polyline></svg>
|
|
</span>
|
|
</aside>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<main id="main">
|
|
|
|
<div id="note-wrapper" class="note-wrapper">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<p>#start of lecture 1</p>
|
|
<h3 id="intro-newton-example">Intro (Newton example):</h3>
|
|
<p>Newton example where we find the equations to describe a falling object using differential equations (DE’s)
|
|
We know $F=ma$
|
|
$F=m\frac{dv}{dt}=mg-kv$ <svg width="11px" height="10px" viewBox="0 0 11 10" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g id="left-arrow" transform="translate(5.500000, 5.000000) scale(-1, 1) translate(-5.500000, -5.000000) "> <path d="M1.77635684e-14,5 L9,5" id="rod" stroke="#000000" stroke-width="2"></path> <path d="M11,5 L6,0.5 L6,9.5 L11,5 Z" id="point" fill="#000000"></path></g></svg> we account for air resistance here. We can approximate the force of air resistance is proportional to the speed times a constant.
|
|
We can rearrange and solve it as it is a separable DE:
|
|
$\frac{dv}{mg-kv}=\frac{dt}{m}$
|
|
integrating both sides:
|
|
$\int \frac{dv}{mg-kv}=\frac{t}{m}+C$
|
|
let $u=mg-kv \quad du=-kdv$
|
|
$\int \frac{dv}{mg-kv}=\int \frac{du}{-k*u}=\frac{1}{-k}\ln\mid mg-kv\mid=\frac{t}{m}+C$
|
|
Very cool, but I want the velocity as a function of time, isolate v
|
|
$\ln\mid mg-kv\mid=-\frac{kt}{m}+C$
|
|
$\mid mg-kv\mid=e^{\frac{-kt}{m}+C}=e^{\frac{-kt}{m}}e^C$
|
|
$e^C$ is a + constant, the absolute value will multiply the inside expression by -1 when the inside is negative, so we can replace the $e^C$ constant with an arbitrary constant A that can be + or -
|
|
$mg-kv=Ae^{\frac{-kt}{m}}$
|
|
so, the general solution is $v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$</p>
|
|
<h3 id="separable-de">Separable DE:</h3>
|
|
<pre><code>$\frac{dy}{dx}=f(y)g(x) \rightarrow \frac{dy}{f(y)}=g(x)dx\quad where\quad f(y)\ne0$
|
|
(I'm calling this <a class="hashtag" onclick="focusTag(this)">de_s_type1)</a>
|
|
</code></pre>
|
|
<p>ex: $\frac{dy}{dt}=\frac{1-t^2}{y^2}$
|
|
$y^2dy=dt(1-t^2)$
|
|
integrating both sides yields:
|
|
$\frac{y^3}{3}=t-\frac{t^3}{3}+C$
|
|
$y=(3t-t^3+C)^\frac{1}{3}$</p>
|
|
<h3 id="initial-value-problem-ivp">Initial value problem (IVP):</h3>
|
|
<pre><code>A Differential equation with provided initial conditions.
|
|
</code></pre>
|
|
<p><a class="hashtag" onclick="focusTag(this)">ex</a>
|
|
<a class="hashtag" onclick="focusTag(this)">IVP</a> <a class="hashtag" onclick="focusTag(this)">de_s_type1</a>
|
|
ex: $\frac{dy}{dx}=2x\cos^2(y), \quad y(0)=\frac{\pi}{4}$
|
|
$\frac{dy}{\cos^2(y)}=2xdx$
|
|
integrate both sides yields:
|
|
$\int \frac{dy}{\cos^2(y)}=\tan(y)+C=x^2$
|
|
plug in $y(0)=\frac{\pi}{4}$
|
|
$\tan\left( \frac{\pi}{4} \right)+C=0$
|
|
$1+C=0$
|
|
$C=-1$
|
|
So, the answer is: $y=\arctan(x^2+1)$</p>
|
|
<p><a class="hashtag" onclick="focusTag(this)">end</a> of Lecture 1</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<h3>Referenced in</h3>
|
|
|
|
<ul>
|
|
<li>No backlinks found</li>
|
|
|
|
</ul>
|
|
|
|
|
|
|
|
</div>
|
|
</main>
|
|
|
|
<script type="text/javascript">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</script>
|
|
|
|
</body>
|
|
</html>
|