# Convolution A convolution is an operation of function, we take two functions, convolute them and get a new function. Definition of convolution between f and g: $$(f*g)(t):=\int _{0} ^t f(t-v)g(v)\, dv$$ property 1) $f*g=g*f$ proof: $f*g=\int _{0} ^t f(t-v)g(v)\, \underset{ t-v=u }{ dv }=-\int _{t} ^0 f(u)g(t-u) \, du$ $=\int _{0} ^t g(t-u)f(u)\, du=g*f \quad \Box$ property 2) $(f+g)*h=f*h+g*h$ property 3) $(f*g)*h=f*(g*h)$ property 4) $f*0=0$ property 5) $\mathcal{L}\{f*g\}=F(s)G(s)$ #end of lec 19 #start of lec 20 lets try proving property 5: recall property 5: $\mathcal{L}\{f*g\}=F(s)G(s)$ $\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^t f(t-v)g(v) \, dv \right)\, dt$ $\mathcal{L}\{f*g\}=\int _{0} ^t \left( e^{-st}\int_{0} ^\infty u(t-v)f(t-v)g(v) \, dv \right)\, dt$ two nested integrals! using math 209, if both integrals exist, we can exchange the two integrals: $=\int _{0}^\infty ( g(v)\underbrace{ \int _{0}^\infty e^{-st}f(t-v)u(t-v)\, dt }_{ \mathcal{L}\{f(t-v)u(t-v)\}=e^{-vs}F(s) } )\, dv$ $=F(s)\int _{0} ^\infty e^{-rs}g(v)\, dv=F(s)G(s) \quad \Box$ This is a very useful fact. We will see how it helps us solve differential equations. ex: $$\mathcal{L}^{-1}\left\{ \frac{1}{s^2+1}\frac{1}{s^2+1} \right\}$$ we know the inverse LT of $\frac{1}{s^2+1}$ is $\sin(t)$: then, using property 5: $\mathcal{L}\{f*g\}=F(s)G(s)$ $f*g=\mathcal{L}^{-1}\{F(s)G(s)\}=(\sin*\sin)(t)$ $\mathcal{L}^{-1}\{\frac{1}{s^2+1} \frac{1}{s^2+1}\}=(\sin*\sin)(t)$ using the definition of convolution: $\mathcal{L}^{-1}\left\{ \frac{1}{s^2+1} \frac{1}{s^2+1} \right\}=\int _{0}^t \sin(t-v)\sin(v)\, dv$ use trig identity: $\sin \alpha \sin \beta=\frac{1}{2}(\cos(\alpha-\beta)-\cos(\beta+\alpha)$ $=\frac{1}{2}\int _{0} ^t (\cos(t-2v)-\cos(t))\, dv$ $=\frac{1}{2}\left( -\frac{1}{2}\sin(t-2v)|^t_{0}-t\cos t \right)=\frac{1}{2}\left( \frac{1}{2}\sin(t)+\frac{1}{2}\sin(t)-t\cos t \right)$ $$=\frac{1}{2}(\sin t-t\cos t)$$ #ex solve the problem: $$y'+y-\int _{0} ^t y(v)\sin(t-v) \, dv =-\sin t,\qquad y(0)=1$$ this is called an integral-differential equation. we can convert it to a differential equation by taking the derivative of both sides (wrt to dt.): $y''+y'-y\sin(t-v)=-\cos t$ ew thats a gross second order linear equation. lets solve using laplace. $sY-1+Y-\mathcal{L}\{(y*\sin)(t)\}=-\frac{1}{s^2+1}$ $\left( s+1-\frac{1}{s^2+1}\right)Y(s)=1-\frac{1}{s^2+1}=\frac{s^2}{s^2+1}$ $\frac{(s^2+1)(s+1)-1}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$ $\frac{s^3+s^2+s+\cancel{ 1 }-\cancel{ 1 }}{s^2+1}Y(s)=\frac{s^2}{s^2+1}$ $Y(s)=\frac{s}{s^2+s+1}$ $y(t)=\mathcal{L}^{-1}\left\{ \frac{s}{s^2+s+1} \right\}=\mathcal{L}^{-1}\{\frac{s}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2}\}$ $=\mathcal{L}^{-1}\left\{ \frac{s+\frac{1}{2}-\frac{1}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$ $=e^{-t/2}\cos\left( \frac{\sqrt{ 2 }}{2}t \right)-\frac{1}{2} \frac{2}{\sqrt{ 3 }}\mathcal{L}^{-1}\left\{ \frac{\frac{\sqrt{ 3 }}{2}}{\left( s+\frac{1}{2} \right)^2+\left( \frac{\sqrt{ 3 }}{2} \right)^2} \right\}$ $$y(t)=e^{-t/2}\left( \cos \frac{\sqrt{ 3 }}{2}t-\frac{1}{\sqrt{ 3 }} \sin \frac{\sqrt{ 3 }}{2}t\right)$$ this is a good algorithmic method now for solving differential equations in software, for example solving circuits. ## Transfer function imagine we have the equation: $$ay''+by'+cy=g(t), \qquad y(0)=y_{0},\ y'(0)=y_{1}$$ 1) $ay''+by'+cy=g(t)$ $y(0)=y'(0)=0$ gives a solution $y_{*}$ 2) $ay''+by'+cy=0$ $y(0)=y_{0},\ y'(0)=y_{1}$ gives a soltuion $y_{**}=c_{1}y_{1}+c_{2}y_{2}$ then by principle of super position: $y=y_{*}+y_{**}$ solving 1) gives us: $as^2Y+bsY+cY=G(s)$ $Y(s)=\frac{1}{as^2+bs+c}G(s)$ the limit approaches 0 for large s so its a legitimate Laplace transform let $Y(s)=H(s)G(s)$ where $H(s)=\frac{1}{as^2+bs+c}$ and called the transfer function we put in $g(t)$ and we get out $Y(s)$. So it "transfers". $H(s)=\frac{Y(s)}{G(s)}$ $\mathcal{L}^{-1}\{H\}=h(t)$ called the impulse response function. We will see why its called that later. $y_{*}(t)=(h*g)(t)$ $y(t)=(h*g)(t)+c_{1}y_{1}+c_{2}y_{2}$ he's finished 8 minutes early, lets go! #end of lec 20