Compare commits

...

3 Commits

15 changed files with 63 additions and 219 deletions

View File

@ -1,37 +1,42 @@
# Bernoulli's equation: # Bernoulli's equation:
### $$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad\quad n\in\mathbb{R},\quad n\ne0,1$$ ### $$\frac{ dy }{ dx } +P(x)y=Q(x)y^n \quad\quad n\in\mathbb{R},\quad n\ne0,1$$
>I'm calling this #de_b_type1. This is in standard form btw. >For now, I'll tag and refer to these as #de_bernoulli. This is in standard form btw.
It looks almost like a linear equation! In fact if $n=0$ it is by definition. We will see further that if $n=1$ you get a separable equation. So we ignore the cases when $n=0,1$ as these can be solved with prior tools. It looks almost like a linear equation! In fact if $n=0$ it is by definition. We will see further that if $n=1$ you get a separable equation. So we ignore the cases when $n=0,1$ as these can be solved with prior tools.
Bernoulli's equations are important as you will see it in biology and in engineering. Bernoulli's equations are important as you will see it in biology and in engineering.
If $y$ is $+$ then $y(x)=0$ is a solution to the equation: Our goal is to find the general solution to $y$ which is some function of $x$. We should expect one arbitrary constant in our final answer for $y$ since this is a first order differential equation.
$\frac{dy}{dx}+0=0\quad\Rightarrow \quad0=0$ Notice there's an easy solution! $y(x)=0$ is a trivial solution to any Bernoulli equation.
You can verify that by plugging in $y(x)=0$ to the original expression:
$\frac{dy}{dx}+0=0\quad \implies \quad0=0$
Now let's find the general solution.
Let's move the y to the LHS: Let's move the y to the LHS:
$y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$ $y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$
notice that $y(x)=0$ is no longer a solution! It was lost due to dividing by zero. So from here on out we will have to remember to add it back in our final answers. notice that $y(x)=0$ is no longer a solution! It was lost due to dividing by zero. So from here on out we will have to remember to add it back in our final answers.
let $y^{1-n}=u$ let $y^{1-n}=u$
Differentiating this with respect to x gives us: Differentiating this with respect to $x$ gives us:
$(1-n)y^{-n}\frac{ dy }{ dx }=\frac{du}{dx}$ $(1-n)y^{-n}\frac{ dy }{ dx }=\frac{du}{dx}$
$y^{-n}\frac{ dy }{ dx }=\frac{ du }{ dx }{\frac{1}{1-n}}$ $y^{-n}\frac{ dy }{ dx }=\frac{ du }{ dx }{\frac{1}{1-n}}$
substituting in we get: substituting in we get:
$y^{-n}\frac{ dy }{ dx }+P(x)u=Q(x)=\frac{ du }{ dx }{\frac{1}{1-n}+P(x)u}$ $y^{-n}\frac{ dy }{ dx }+P(x)u=Q(x)=\frac{ du }{ dx }{\frac{1}{1-n}+P(x)u}$
and we get a linear equation again: (Handy formula if you wanna solve Bernoulli equations quick. Just remember that once you find $u(x)$, substitute it back for $y(x)^{1-n}=u(x)$ to get your solution for y.) And that is a linear equation again, which can be solved with prior tools.
Here's a handy formula if you wanna solve Bernoulli equations quick:
$$\frac{1}{1-n}\frac{ du }{ dx }+P(x)u=Q(x)\quad \Box$$ $$\frac{1}{1-n}\frac{ du }{ dx }+P(x)u=Q(x)\quad \Box$$
Just remember that once you find $u(x)$, substitute it back for $y(x)^{1-n}=u(x)$ to get your solution for y, and don't forget to add $y(x)=0$ with your final answer!
>Remember when I said that when n=1 the equation becomes a separable equation?: >Remember when I said that when n=1 the equation becomes a separable equation?:
>$y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$ >$y^{-n}\frac{ dy }{ dx }+P(x)y^{1-n}=Q(x)$
>let $n=1$ >let $n=1$
>$y^{-1}\frac{ dy }{ dx }+P(x)=Q(x)$ >$y^{-1}\frac{ dy }{ dx }+P(x)=Q(x)$
>$y^{-1}dy=dx(Q(x)-P(x))$ <-This is indeed a separable equation #de_s_type1 >$y^{-1}dy=dx(Q(x)-P(x))$ <-This is indeed a separable equation #de_separable
--- ---
# Examples of Bernoulli's equation: # Examples of Bernoulli's equation:
#ex #de_b_type1 Find the general solution to: #ex #de_bernoulli Find the general solution to:
$y'+y=(xy)^2$ $y'+y=(xy)^2$
Looks like a Bernoulli equation because when we distribute the $^2$ we get $x^2y^2$ on the RHS. This also tells us that n=2 Looks like a Bernoulli equation because when we distribute the $^2$ we get $x^2y^2$ on the RHS. This also tells us that n=2
$y'+y=x^2y^2$ $y'+y=x^2y^2$
$y'y^{-2}+y^{-1}=x^2$ $y'y^{-2}+y^{-1}=x^2$
>Note that we lost the y(x)=0 solution here, we will have to add it back in the end. >Note that we lost the $y(x)=0$ solution here, we will have to add it back in the end.
let $u=y^{1-n}=y^{-1}$ let $u=y^{1-n}=y^{-1}$
Differentiating wrt. $x$ we get: $\frac{du}{dx}=-y^{-2}{\frac{dy}{dx}}$ Differentiating wrt. $x$ we get: $\frac{du}{dx}=-y^{-2}{\frac{dy}{dx}}$

View File

@ -6,7 +6,7 @@ $dF=\frac{ \partial F }{ \partial x }dx+\frac{ \partial F }{ \partial y }dy=0$ s
so $F(x,y)=C$ so $F(x,y)=C$
the solution to these exact equations is given by $F()$ but how do we recover $F$ from it's partial derivatives? the solution to these exact equations is given by $F()$ but how do we recover $F$ from it's partial derivatives?
Equation of the form: $$M(x,y)dx+N(x,y)dy=0$$ Equation of the form: $$M(x,y)dx+N(x,y)dy=0$$
>I'm calling this #de_e_type1 >I'm calling this #de_exact
is called exact if $M(x,y)=\frac{ \partial F }{ \partial x }$ and $N(x,y)=\frac{ \partial F }{ \partial y }$ for some function $F(x,y)$ is called exact if $M(x,y)=\frac{ \partial F }{ \partial x }$ and $N(x,y)=\frac{ \partial F }{ \partial y }$ for some function $F(x,y)$
then differentiating we get: then differentiating we get:
@ -31,7 +31,7 @@ $F(x,y)=\int M(x,y) \, dx+g(y)$ where g is any function of y. The constant of in
now 2nd condition: $N=\frac{ \partial F }{ \partial y }=\frac{ \partial }{ \partial y }\int M(x,y) \, dx+g'(y)=N(x,y)$ now 2nd condition: $N=\frac{ \partial F }{ \partial y }=\frac{ \partial }{ \partial y }\int M(x,y) \, dx+g'(y)=N(x,y)$
to reiterate, first test if equation is exact, then take m or n and integrate with x or y respectively then differentiate with respect to y or x respectively. to reiterate, first test if equation is exact, then take m or n and integrate with x or y respectively then differentiate with respect to y or x respectively.
#ex #de_e_type1 #ex #de_exact
$$\underbrace{( 2xy+3 )}_{ M }dx+\underbrace{ (x^2-1) }_{N}dy=0$$ $$\underbrace{( 2xy+3 )}_{ M }dx+\underbrace{ (x^2-1) }_{N}dy=0$$
$\frac{ \partial M }{ \partial y }=2x=\frac{ \partial N }{ \partial x }=2x$ so its exact! $\frac{ \partial M }{ \partial y }=2x=\frac{ \partial N }{ \partial x }=2x$ so its exact!
$\frac{ \partial F }{ \partial y }=N(x,y)=x^2-1$ $\frac{ \partial F }{ \partial y }=N(x,y)=x^2-1$

View File

@ -83,7 +83,7 @@ $\phi \approx 0.9273\dots$
$$y(t)=\frac{5}{4}e^{-3t}\sin(4t+\phi)$$ $$y(t)=\frac{5}{4}e^{-3t}\sin(4t+\phi)$$
Important take away: We computed $\phi$ and $A$ in this example. We found a way to know the envelope of the amplitude of the oscillating system and it's phase shift. Important take away: We computed $\phi$ and $A$ in this example. We found a way to know the envelope of the amplitude of the oscillating system and it's phase shift.
"I know engineers love calculators, I know mathematicians hate calculators, and that's probably the only difference between mathematicians and engineers." -Prof (referring to calculating arctan(4/3) on an exam) <i>"I know engineers love calculators, I know mathematicians hate calculators, and that's probably the only difference between mathematicians and engineers."</i> -Prof (referring to a student question on calculating arctan(4/3) on an exam. Btw the answer is no, you wouldn't need to evaluate that on an exam.)
3.) b=10 3.) b=10
$r_{1,2}=-\frac{10}{2}\pm \frac{\sqrt{ 10^2-4*25 }}{2}=-5$ (repeated root, critically damped) $r_{1,2}=-\frac{10}{2}\pm \frac{\sqrt{ 10^2-4*25 }}{2}=-5$ (repeated root, critically damped)
$y(t)=(c_{1}+c_{2}t)e^{-5t}$ $y(t)=(c_{1}+c_{2}t)e^{-5t}$

View File

@ -2,7 +2,7 @@
#start of lecture 4 #start of lecture 4
## Linear coefficients equations ## Linear coefficients equations
$$(a_{1}x+b_{1}y+c_{1})dx+(a_{2}x+b_{2}y+c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$ $$(a_{1}x+b_{1}y+c_{1})dx+(a_{2}x+b_{2}y+c_{2})dy=0 \qquad a_{1},b_{1},c_{1},a_{2},b_{2},c_{2}\in \mathbb{R}$$
> I'm calling this #de_LC_type1 > I'm calling this #de_LC
imagine $c_{1},c_{2}=0$ It becomes a homogenous equation! #de_h_type2 imagine $c_{1},c_{2}=0$ It becomes a homogenous equation! #de_h_type2
@ -19,7 +19,7 @@ if $\det\begin{pmatrix}a_{1} & b_{1} \\a_{2} & b_{2}\end{pmatrix}\ne0$ the syste
if $\det\begin{pmatrix}a_{1} & b_{1} \\a_{2} & b_{2}\end{pmatrix}=0 \Rightarrow$ the system is unsolvable but we get an equation of type $\frac{ dy }{ dx }=G(ax+by)$ (also homogenous) if $\det\begin{pmatrix}a_{1} & b_{1} \\a_{2} & b_{2}\end{pmatrix}=0 \Rightarrow$ the system is unsolvable but we get an equation of type $\frac{ dy }{ dx }=G(ax+by)$ (also homogenous)
### Example ### Example
#ex #de_LC_type1 #ex #de_LC
$$(-3x+y+6)dx+(x+y+2)dy=0$$ $$(-3x+y+6)dx+(x+y+2)dy=0$$
let $x=u+k$ let $x=u+k$
$y=v+l$ $y=v+l$

View File

@ -3,7 +3,7 @@
# Linear equation: # Linear equation:
$$a(x)\frac{ dy }{ dx }+b(x)y=f(x)$$ $$a(x)\frac{ dy }{ dx }+b(x)y=f(x)$$
>I'm calling this #de_L_type1 >I'm calling this #de_linear_intro
if we assume $b(x)=a'(x)$ it kinda starts to look like a product rule if we assume $b(x)=a'(x)$ it kinda starts to look like a product rule
$a(x)y'+a'(x)y=f(x)=(ay)'$ $a(x)y'+a'(x)y=f(x)=(ay)'$
@ -11,7 +11,7 @@ $ay=\int f(x) \, dx$ <-yay! We can find the solutions to y.
we can rewrite the linear equation in what's called standard form: we can rewrite the linear equation in what's called standard form:
$$\frac{ dy }{ dx }+P(x)y=Q(x)$$ $$\frac{ dy }{ dx }+P(x)y=Q(x)$$
>I'm calling this #de_L_type2 ) >I'm calling this #de_linear )
we will define a function $\mu(x)$ called the integration factor, also expressed as $I(x)$ we will define a function $\mu(x)$ called the integration factor, also expressed as $I(x)$
Multiply both sides by $\mu(x)$ Multiply both sides by $\mu(x)$
@ -29,10 +29,10 @@ finally we get that $\mu(x)=I(x)=e^{\int P(x) \, dx}\quad \Box$ #remember
--- ---
#end of lecture 2 #start of lecture 3 #end of lecture 2 #start of lecture 3
# Examples of linear equations: # Examples of linear equations:
#ex #de_L_type2 Find the general solution to the equation: #ex #de_linear Find the general solution to the equation:
## $$(1+\sin(x))y'+2\cos(x)y=\tan(x)$$ ## $$(1+\sin(x))y'+2\cos(x)y=\tan(x)$$
let $a(x)=1+sin(x)\qquad b(x)=2\cos(x)$ let $a(x)=1+sin(x)\qquad b(x)=2\cos(x)$
we can see that $b(x)\ne a'(x)$ :( so we cant use #de_L_type1 we can see that $b(x)\ne a'(x)$ :( so we cant use #de_linear_intro
let's rearrange it into standard form: let's rearrange it into standard form:
$y'+\frac{{2\cos(x)}}{1+\sin(x)}=\frac{\tan(x)}{1+\sin(x)}$ $y'+\frac{{2\cos(x)}}{1+\sin(x)}=\frac{\tan(x)}{1+\sin(x)}$
$P(x):=\frac{2\cos(x)}{1+\sin(x)} \qquad Q(x)=\frac{\tan(x)}{1+\sin(x)}$ $P(x):=\frac{2\cos(x)}{1+\sin(x)} \qquad Q(x)=\frac{\tan(x)}{1+\sin(x)}$
@ -58,7 +58,7 @@ Albeit a bit ugly, we have found the general solution to the DE:
$$y=\frac{1}{(1+\sin(x))^2}(\ln\mid sec(x)\mid+\ln\mid sec(x)+\tan(x)\mid-\sin(x)+C)$$ $$y=\frac{1}{(1+\sin(x))^2}(\ln\mid sec(x)\mid+\ln\mid sec(x)+\tan(x)\mid-\sin(x)+C)$$
--- ---
#ex #IVP #de_L_type2 #ex #IVP #de_linear
## $$y'+\tan(x)y=\cos^2(x) \qquad y\left( \frac{\pi}{4} \right)=\frac{1}{2}$$ ## $$y'+\tan(x)y=\cos^2(x) \qquad y\left( \frac{\pi}{4} \right)=\frac{1}{2}$$
Looks like a linear equation with an initial value. Looks like a linear equation with an initial value.
$P(x)=\tan(x) \qquad Q(x)=\cos^2(x) \qquad I(x)=e^{\int \tan(x) \, dx}$ $P(x)=\tan(x) \qquad Q(x)=\cos^2(x) \qquad I(x)=e^{\int \tan(x) \, dx}$

View File

@ -13,14 +13,14 @@ $v\cancelto{ 0 }{ (y_{1}''+p(x)y_{1}'+q(x)y_{1}) }+v''y_{1}+(2y_{1}'+p(x)y_{1})v
$y_{1}v''+(2y_{1}'+p(x)y_{1})=f(x)$ $y_{1}v''+(2y_{1}'+p(x)y_{1})=f(x)$
$v''+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)v'=\frac{f(x)}{y_{1}}$ $v''+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)v'=\frac{f(x)}{y_{1}}$
substitute $v'=u$ substitute $v'=u$
$u'+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)u=\frac{f(x)}{y_{1}}$<- This is now a linear first order equation #de_L_type2 $u'+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)u=\frac{f(x)}{y_{1}}$<- This is now a linear first order equation #de_linear
This can be solved with prior tools now, We compute the integrating factor $\mu$ This can be solved with prior tools now, We compute the integrating factor $\mu$
$\mu=e^{\int(2y_{1}'/y_{1}+p)dx}=e^{\ln(y_{1}^2)}e^{\int p(x) \, dx}=y_{1}^2\cdot e^{\int p(x) \, dx}$ $\mu=e^{\int(2y_{1}'/y_{1}+p)dx}=e^{\ln(y_{1}^2)}e^{\int p(x) \, dx}=y_{1}^2\cdot e^{\int p(x) \, dx}$
From there, continue on as you would with any linear first order equation. From there, continue on as you would with any linear first order equation.
Isn't this nice? some kind of magic. We made some guesses and we arrived somewhere. Isn't this nice? some kind of magic. We made some guesses and we arrived somewhere.
## What you need to remember: ## What you need to remember:
#remember #remember
I know memorizing formulas robs the richness of mathematics, but that is just the nature of test taking imo. If you want to minimize the amount of work to the lowest possible level, this would be the fastest algorithm, it's a little heavy on memorization: I know memorizing formulas robs the richness of mathematics, but that is just the nature of test taking imo. If you want to minimize the amount of work to the lowest possible level, this would be the fastest algorithm (that I know of), it's a little heavy on memorization:
1) $y''+p(x)y'+q(x)y=f(x)$ 1) $y''+p(x)y'+q(x)y=f(x)$
2) $u'+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)u=\frac{f(x)}{y_{1}}$ <- Notice, if the coefficient for the $u$ term is $0$, you can treat the equation as a separable equation to minimize computation (integrate both sides to get u, then move on to step 5). Otherwise, move on to step 3. 2) $u'+\left( \frac{2y_{1}'}{y_{1}}+p(x) \right)u=\frac{f(x)}{y_{1}}$ <- Notice, if the coefficient for the $u$ term is $0$, you can treat the equation as a separable equation to minimize computation (integrate both sides to get u, then move on to step 5). Otherwise, move on to step 3.
3) $\mu(x)=y_{1}^2\cdot e^{\int p(x) \, dx}$ <- where $y_{1}$ is one of your homogenous solutions. 3) $\mu(x)=y_{1}^2\cdot e^{\int p(x) \, dx}$ <- where $y_{1}$ is one of your homogenous solutions.
@ -43,6 +43,7 @@ $u'+\left( \frac{2y_{1}'}{y_{1}}+4x \right)u=\frac{8{e^{-x^2}e^{-2x}}}{e^{-x^2}}
$u'+\underbrace{ \left( \frac{2{e^{-x^2}(-2x)}}{e^{-x^2}}+4x \right) }_{ =0 }u=8e^{-2x}$ $u'+\underbrace{ \left( \frac{2{e^{-x^2}(-2x)}}{e^{-x^2}}+4x \right) }_{ =0 }u=8e^{-2x}$
$u'=8e^{-2x}$ $u'=8e^{-2x}$
> Lucky us! This is just a separable equation. No need to treat it like a linear equation. > Lucky us! This is just a separable equation. No need to treat it like a linear equation.
integrating both sides: integrating both sides:
$u=-4e^{-2x}+c_{1}$ $u=-4e^{-2x}+c_{1}$
$v'=u=-4e^{-2x}+c_{1}$ $v'=u=-4e^{-2x}+c_{1}$

View File

@ -4,14 +4,15 @@ most of these "models" in EE are based on these DE. You'll see how important DE
Second order equations arise from very simple problems many engineers face, for instance a pendulum can be described by a second order equation. Second order equations arise from very simple problems many engineers face, for instance a pendulum can be described by a second order equation.
#second_order #second_order
### $$a_{2}(t)y''+a_{1}(t)y'+a_{0}(t)y=f(t)$$ ### $$a_{2}(t)y''+a_{1}(t)y'+a_{0}(t)y=f(t)$$
To motivate our interest: #fix To motivate our interest:
![draw](drawings/Drawing-2023-09-15-13.32.48.excalidraw.png) ![draw](drawings/Drawing-2023-09-15-13.32.48.excalidraw.png)
$ma=my''=-by'-ky$ $F=ma=my''$
$my''=-by'-ky$
Look how a second order equation describes the motion of a mass-spring system! Look how a second order equation describes the motion of a mass-spring system!
> Circuits that contains resistors, capacitors and inductors also behaves with this equation as well if you ignore the external magnetic fields around the circuit. > Circuits that contains resistors, capacitors and inductors also behaves with this equation as well if you ignore the external magnetic fields around the circuit.
The equation $my''+by'+ky=0$ is a homogenous second order equation. (in this case, it's full name is homogenous second order linear equation with constant coefficients.) The equation $my''+by'+ky=0$ is a homogenous second order equation, because the RHS is 0. (in this case, it's full name is homogenous second order linear equation with constant coefficients.)
>Similar pattern with the electrical circuit analogy. This DE ignores external forces on the mass-spring system, it only considers the friction and the spring. If we push the mass then there would be an external force. >Similar pattern with the electrical circuit analogy. This DE ignores external forces on the mass-spring system, it only considers the friction and the spring. If we push the mass then there would be an external force and the RHS would be non zero, and the equation would be non homogenous.
It's called second order because we have second derivative in the equation. It's called second order because we have second derivative in the equation.

View File

@ -19,9 +19,9 @@ so, the general solution is $$v(t)=\frac{1}{k}(mg-Ae^{\frac{-kt}{m}})$$
## Separable DE: ## Separable DE:
$$\frac{dy}{dx}=f(y)g(x) \rightarrow \frac{dy}{f(y)}=g(x)dx\quad where\quad f(y)\ne0$$ $$\frac{dy}{dx}=f(y)g(x) \rightarrow \frac{dy}{f(y)}=g(x)dx\quad where\quad f(y)\ne0$$
>Since these are so similar, I'm calling these two #de_s_type1 Note that $\frac{1}{f(y)}$ is still an arbitrary function of y. So you could also say: $k(y)dy=g(x)dx$ is a separable equation. >Since these are so similar, I'm calling these two #de_separable Note that $\frac{1}{f(y)}$ is still an arbitrary function of y. So you could also say: $k(y)dy=g(x)dx$ is a separable equation.
#ex #de_s_type1 #ex #de_separable
$$\frac{dy}{dt}=\frac{1-t^2}{y^2}$$ $$\frac{dy}{dt}=\frac{1-t^2}{y^2}$$
$y^2dy=dt(1-t^2)$ $y^2dy=dt(1-t^2)$
integrating both sides yields: integrating both sides yields:
@ -32,7 +32,7 @@ $$y=(3t-t^3+C)^\frac{1}{3}$$
## Initial value problem (IVP): ## Initial value problem (IVP):
A Differential equation with provided initial conditions. A Differential equation with provided initial conditions.
#ex #IVP #de_s_type1 #ex #IVP #de_separable
$$\frac{dy}{dx}=2x\cos^2(y), \quad y(0)=\frac{\pi}{4}$$ $$\frac{dy}{dx}=2x\cos^2(y), \quad y(0)=\frac{\pi}{4}$$
$\frac{dy}{\cos^2(y)}=2xdx$ $\frac{dy}{\cos^2(y)}=2xdx$
integrate both sides yields: integrate both sides yields:

View File

@ -122,7 +122,7 @@ this is a separable equation.
We can treat the function $T$ as a variable: We can treat the function $T$ as a variable:
$\frac{dT}{dt} \frac{1}{T}=-\left( \frac{n\pi}{L} \right)^2D$ $\frac{dT}{dt} \frac{1}{T}=-\left( \frac{n\pi}{L} \right)^2D$
$\int{dT} \frac{1}{T}=\int-\left( \frac{n\pi}{L} \right)^2Ddt$ $\int{dT} \frac{1}{T}=\int-\left( \frac{n\pi}{L} \right)^2Ddt$
$\ln(T)=-\left( \frac{n\pi}{L} \right)Dt+c_{n}$ $\ln\mid T \mid=-\left( \frac{n\pi}{L} \right)^2Dt+c_{n}$
$T_{n}(t)=c_{n}e^{-(\frac{n\pi}{L})^2Dt}$ $T_{n}(t)=c_{n}e^{-(\frac{n\pi}{L})^2Dt}$
>Yes this looks illegal, but it works, you could also integrate more rigorously if you did a u-sub: $u=T(t) \quad \frac{du}{dt}=T'(t)$) >Yes this looks illegal, but it works, you could also integrate more rigorously if you did a u-sub: $u=T(t) \quad \frac{du}{dt}=T'(t)$)
</br> </br>

View File

@ -95,7 +95,7 @@ $$u(0,t)=u(\pi,t)=0 \qquad t>0$$
$$u(x,0)=\sin(x) \qquad 0\leq x\leq \pi$$ $$u(x,0)=\sin(x) \qquad 0\leq x\leq \pi$$
$$\frac{ \partial u }{ \partial t }(x,0)=5\sin(2x)-3\sin(5x)\qquad 0\leq x\leq \pi$$ $$\frac{ \partial u }{ \partial t }(x,0)=5\sin(2x)-3\sin(5x)\qquad 0\leq x\leq \pi$$
when $tx$ wasn't there in last problem we had the solution: when $tx$ wasn't there in last problem we had the solution:
$u(t,x)=\sum_{n=1}^\infty \underbrace{ (a_{n}\cos(nt)+b_{n}\sin(nt)) }_{ u_{n}(t) }\sin(nt)$ notice $L=\pi$ $u(t,x)=\sum_{n=1}^\infty \underbrace{ (a_{n}\cos(nt)+b_{n}\sin(nt)) }_{ u_{n}(t) }\sin(nx)$ notice $L=\pi$
since $u(0,t)=u(\pi,t)=0$ we can expect a solution of the form: since $u(0,t)=u(\pi,t)=0$ we can expect a solution of the form:
$u(x,t)=\sum_{n=1}^\infty u_{n}(t)\sin\left( \frac{n\pi x}{\pi} \right)$ $u(x,t)=\sum_{n=1}^\infty u_{n}(t)\sin\left( \frac{n\pi x}{\pi} \right)$
If any of the boundary conditions are non zero, then we have to split(?) into X and T. (needs verification) If any of the boundary conditions are non zero, then we have to split(?) into X and T. (needs verification)
@ -142,9 +142,10 @@ Here's a plot showing the behavior of the string (graphed up to 40 harmonics):
Finished the solution. Man I got teary eyed from this lecture. Finished the solution. Man I got teary eyed from this lecture.
#end of lec 35 #end of lec 35
#start of lec 36 #start of lec 36
# Last lecture
What do you guys wanna do? Questions or summary of the course? What do you guys wanna do? Questions or summary of the course?
Okay we do summary. Okay we do summary.
# Summary of second half of Math 201 ## Summary of second half of Math 201
(available on eclass) (available on eclass)
Laplace transforms: Laplace transforms:
Definition of laplace, Definition of laplace,

View File

@ -2,9 +2,6 @@
These are notes for the [University of Alberta MATH 201 - Differential Equations](https://apps.ualberta.ca/catalogue/course/math/201) course. These are notes for the [University of Alberta MATH 201 - Differential Equations](https://apps.ualberta.ca/catalogue/course/math/201) course.
I have written these notes for myself, I thought it would be cool to share them. These notes may be inaccurate, incomplete, or incoherent. No warranty is expressed or implied. Reader assumes all risk and liabilities. I have written these notes for myself, I thought it would be cool to share them. These notes may be inaccurate, incomplete, or incoherent. No warranty is expressed or implied. Reader assumes all risk and liabilities.
</br> </br>
Good luck on the final! <3
If we do bad on the exam, Petar will come after us with the Dirac delta 🤜💥
</br>
[Separable equations (lec 1)](separable-equations-lec-1.html) [Separable equations (lec 1)](separable-equations-lec-1.html)
[Homogenous equations (lec 2)](homogenous-equations-lec-2.html) [Homogenous equations (lec 2)](homogenous-equations-lec-2.html)
[Linear equations (lec 2-3)](linear-equations-lec-2-3.html) [Linear equations (lec 2-3)](linear-equations-lec-2-3.html)
@ -30,9 +27,19 @@ If we do bad on the exam, Petar will come after us with the Dirac delta 🤜💥
[Fourier series (lec 28-29)](fourier-series-lec-28-29.html) [Fourier series (lec 28-29)](fourier-series-lec-28-29.html)
[Heat equation (lec 30-33)](heat-equation-lec-30-33.html) [Heat equation (lec 30-33)](heat-equation-lec-30-33.html)
[Wave equation (lec 33-36)](wave-equation-lec-33-36.html) [Wave equation (lec 33-36)](wave-equation-lec-33-36.html)
</br> </br>
[How to solve any DE, a flow chart](Solve-any-DE.png) (Last updated Oct 1st, needs revision. But it gives a nice overview.) [How to solve any DE, a flow chart](Solve-any-DE.png) (Last updated Oct 1st 2023. Needs revision, but it gives a nice overview.)
[Big LT table (.png)](drawings/bigLTtable.png) [Big LT table (.png)](drawings/bigLTtable.png)
[Small LT table (.png)](drawings/smallLTtable.png) [Small LT table (.png)](drawings/smallLTtable.png)
</br>
# Additional recommended study material
For the midterm exam, I highly recommend watching this video by The Math Sorcerer: [youtube.com/watch?v=kIZpbeE_yTc](https://youtube.com/watch?v=kIZpbeE_yTc)
From my experience, studying off this video was by far the best use of my time. Try each question yourself and follow his solution to check.
</br>
For the final exam, I unfortunately couldn't find good study videos. I recommend studying PDE's hard, solidify your understanding of heat eq, driven heat eq, heat eq with non-zero end points, wave eq, and driven wave eq. Afterwards, I recommend studying power series since it's the next biggest scary monster. Finally, go over the rest of the past topics to fill your understanding and memory if you have the time. I'm thinking I should record a final exam review guide, hmmm. I'll update this text if I ever make one.
</br>
The recommended course textbook when I took the class was: <i>Fundamentals of Differential Equations, R. Kent Nagle, Edward B. Saff and Arthur D. Snider, 9th Edition</i> Which is a good textbook imo, although I didn't use it often.
</br>
Personally, I studied the material by attending the lectures and then reviewing/revising these typed notes at home, often relying on my prof's notes on eclass in case I copied off the whiteboard wrong/couldn't keep up. (eclass is the name of my university's online class management system.)
Of course there may still be mistakes riddled throughout so as of Jan 5th 2024, <b>I'm offering 1$ CAD in bounties for every mistake reported to my email/git repo, at least until supplies last.</b> General editing and formatting changes are also gladly welcomed through the git repository below or by email.
</br> </br>

View File

@ -554,7 +554,7 @@ HOgDwZkHZB1IC8GNBbwcGAfBIwRUE/BNQf8GNBgISzTAhpomCG9BkIc6DQhwwXCF
jBiIVMEzBCAH8ELBiIJiGtA2IRsGmh2wQSF7B/bCSFm2CAMcDI+WII8icuYQC+CV jBiIVMEzBCAH8ELBiIJiGtA2IRsGmh2wQSF7B/bCSFm2CAMcDI+WII8icuYQC+CV
AYoH/4QKS7lSKrudIgyFgBaAKmCQBVzrmwqgswKtA/egog87s+51ocBGArLPcDKg ACoH/4QKS7lSKrudIgyFgBaAKmCQBVzrmwqgswKtA/egog87s+51ocBGArLPcDKg
wLrywfAzAEKxSibwKyCssIoIMDYAKoqyxsASYIg7cKpAegC4BCLvgFIuwHjaIYu5 wLrywfAzAEKxSibwKyCssIoIMDYAKoqyxsASYIg7cKpAegC4BCLvgFIuwHjaIYu5
@ -2670,198 +2670,26 @@ o0m4QCaXKR2KBFB/j5mEtElvrieDpFEQcP0+JAnmhjuxpTf9o/gKtE2wpS46tEZQ
ZrROj7xwfOhU9zB0QKumaAGgNlma6F4AeRRBAGUUZ1RUZFp4TGR60ya1pY6PIEp5 ZrROj7xwfOhU9zB0QKumaAGgNlma6F4AeRRBAGUUZ1RUZFp4TGR60ya1pY6PIEp5
nTh/j6jUa/RGPItyi5ynX7IPotBxiFMoStBVFTAQdMkXMp15me8kXpa4VBsksCZn nTh/j6jUa/RGPItyi5ynX7IPotBxiFMoStBVFTAQdMkXMp15me8kXoFlOAAikCms
PKUA7iYEpFOpz7YhvcswNyBgjcAFAAvAOhiGEFSVMqAlCjtlDWA+VHS0YVRstHyP OMEIICU0NwAcLDQAIWAWQCHAJSEpYCNAAwALLoYYTjeAPhVANUxNTGwgBAA2AAiA
quQ6QgSfsjeHuSo3gqyGN5z4BYxoY6KfllB15RTPAN0BuYiYijOOdrezFigk/r1R PGw9wC3BCCANJ5vNrSi9TGNMf2wzTGZAJQolTFlpp0xpABNMbcExJbhrrf2dTENM
hJuJCEpASjBrBGnhtRRJn60UTbRIp7SQXxRlY4jUTOyNhrGDuThm943PHXRNOG7L UMx3TEtMUx2pTGTMcMxmQCtMU7hD9SDMQsx+gC4LOH+qzHTMZkAcDgRIlsxOQA9M
o1mXdzcUVT+lQbrImz+sO6Rhu3RxSwiUf0hjujIQgtuU5GcDuueeJEDcPXRg0E0F USWQQQhBPgAYQRFAPsxUACHMR8AXgQ+BH4E1xxzMV0xBzG3BCKE5ISUhNSEwQB0h
o7oFm72LpHO9n4BQAxekhKLOAumyESzSszyXnbbpmum5r6hoSCONabAsRve/Uo5H BMxjzGXMTMxcbDkhEMxNXaFgLgA/qoXMYcx3NEPIQCxOHQhAMQocbCIgPlkarAiz
onB/N5aFlXWCGqu0eXBTxbV/tehKZrEqoZIeyHGhu0hVhRTqElYYbqUoXAejdFam o6AgLRhiN7hVhAEIrMApTHMAIixQIDPuOMSlrzB3pzWXdClMUYA4KK5MfSIBACon
BTSoLpgsRJ6IX6wSA9RTWEBfuziOEImUezuAWFJPthIDeEg5scg04F8IeF+9WbiF oJsRqBzWKCxtwQbMSgcimR1MYGAJAC3MZUAjjgmuiQArLiQKOMcrgxugHaAPH4Cs
uGa0Db+Mp+hKFozASey1Y554dqs85F1/vDuDUzxGLJhNWat4V0GJqgofhCm8t6tk bJcPoDAuAgAygAU0MIEzYaSsasAQrG85BcxSzEogHA4KwTwerCUZgDCAMwAJJQss
erUVrzjjNLCZIH6MjZQQtYnPP4eM+AnoYuWXhwDypOaJrFrMcla+tEoXh3RI9HeP b4EbLF6uHlmIrHBgEwAdQRksUzQ2QDfXMEANLAIgKieSwDYAEQAHIRoABaxSASrB
umhDu7RPlGgic7d5mlmG0GJ2j7RebqT4U38wTF5ul9Rag4aIf9qqT5WUN5hbmFvg IUxdrGkAJax+rAlBAGE3AD2sdCw4ADgKN/+wQCDgMAAULAgAFCwQAA==
RJQAzFz0Q6Gov4mMlGxU4H+0ck2vP57jFmhh6axMX7c65HLNMKxF6TmpkO4SDEj7
GIMLCGbrD5Ydk4jagIeI34rvJJKW8FQdhcBB8GSEdTwSd6tEl0S59qf4deYNMyqp
hygObEOtmpeIdA2CoGeQXr9sWLufbFKVsOxs3xPmF+eTKS8pESkWl6aXuTR9yTY+
l/h3VpBvmiIBgH5Dioe+34PwbpQyjaIDjCe8RaEACqIFo5jAOXcHQDHAO2UNREdA
PoAqlSF+qrBYFHqMb/+mjHNgaW+e2EtEZ8hspQusIjwLGwXZI6wMwAGkO2gNZKZr
rRB3pFYUZisgtZNLtq6LsHv+kM+xN50FFzaOhquoVxBbjGfYR4xQFqI+Fihta5iY
XVBEuoJbrlu6dp4sdXWh043SmRq7pbPOtquOHHlvLXh7OFh8kVaGx7wStnRdrJRv
L0h2ci9ojKB/5LoKrc6i6HF4vjuLa7f3sEecl40sWlubsGm+C1gLyDaEvPuJp4v0
W1B3TST/r7WOzEfMSNu7GbFwZmqnFGBMTJxGT7V/nGh9CGTUenM3QF8IKxxq8SAb
t9GhOglofG4gZFiZoy+CMSOJJ4quGoGUbYRSxj9/r96MrGBJAkBTnr74R8uJWF0H
ml8834YEJOxrkDlKlEUPFGozP+83GJ9mFmxjrIjNhp6CspR6nYhC9AGXgykrWEtY
ffMEhbrJOfaHwE40c0IpoJ3AaqOsmo75tkRrl5UfrggXED2QDMqsWxFYpQouNDkK
FAAWGEqiP/YygAeAem2pABVFJqh4a639hBRkUH2kcJ+bd6v9iRoPwhq6JbUFbQDo
DrOSHL6zt0xoWq9MQyesPhWcZg+VBF1bN+Gvyq6SMFwmh4uMWRRqKHuMeQhGKFoc
T6hVtH03ssxOMEuZApBXUqlzg5u1rHgsVtOWeHuPiPhpTx6Oh3O71RXZk7qvKFLE
WWR5Gh8cUDiv1SlBlNx9r6PcZ3Wqawh9p9xFL67ARAx+wGH4SuRf6HWbIBsKo409
sckMXFgli0qDWHHJA56ODb+CIt+UG6RcochgqFQQb4hh5ARCtLAMyp9gNgA0gamN
Dbh3gKkAJQo3zi0fnAAkgDP5uLR3SbgIVLRmBHlnsABT464EckIdYAEUT+xO8A5X
toqw9qjcdqaPpEVgoE+E4FuqkpxMHGsEEqYDOCm0TMRHVGocV1RuKFrOnmOkQbCU
UdmZ9zH3u50yt6qAWIOVn6xPgg+lhZavsuextxmcXb69QHfaCCRv1QbMcbxftFZ0
aohsNFH4TAxguEFKryOkDDkNhcI6XHCMJWxgjAg1iNhhgGszC84FwAqiBcAMWz/2
NhsArChQWIAIGQigIQAD2yBQaSEt16MBM+OPmDHkD1E3SD+oH6MtdjUxot8kuRrw
D94f1Kh6mjAtab4eEhurqq0GIs4eEDOYGaU6HgVvkFqtJ72wYxhtTH08ZZU8HHIv
uY+y4FzNPPS9khT3mpq0XoY8ekUhRFAoL+YRfQIgKie7abmOKJ4rs5CQOpgtCq7o
ecmHBGzTsHQyCY8YF2YvRJVIF0AEirqzsBgSaDtcGOwLqJz8dIavSwQcP44d9aWc
NkgqGYS4DJAOP55kDscsggywR60RHCh4nWgn3jEFpLkA6zxYO1AA3CPwKMgOyBq6
DvxMmH6wFuITsDCMNgo6qih4tOEaqBagMAInHA+zCbAoHDREDh4JUDxWHmAkeA41
KAJr/DgCfRkkAnDwAaQwkhBwNzQJ2EvikgJNQjb2AOgpPJiQAuGpWDYKLtsF2BoU
CdKeAk0EAEohAmgcCQJJfH80GvA2oB0qnExa5F9PiUcgEG+hHFkgYGkjL8mqgr8C
cgigglZfMIJGzR4Gp1OlFK9+BzBAGSz/jOsfkAuQNQJKAl0CZBARfE3cGQJZfEsC
SXqLzj/2McAbADguB6uiogigNBmPACPbAViPACsusC4z+LhBDHxxU7rwFhADGD1Q
EzgzIjxIutQeYJ6+F/Q3GD+wDo+SVbVaHew+ZAZMTNxyjhbmNMwA7hyuuFAl4RtG
pXxbzbNvuC+9bJqBqW2+sG6oRgRRsHc9A3xJa6IcatxgPS/EmNY7HhSLNF698E5g
a+mzhCAINNhOPQD8UgELBF15KPxItDueDLx4mGytNvxkWDf8fvxaR4O4MXx64hMC
ew2eHCNCQvx8pQ7QMdg+GBlkA9A3SB5UCAYjeIyipqg8qDdAGB+z/HZQDHw86YpF
Oy8t/H3Ip/QZOoygK5QPgn3oPi0NeC/8RfoMgwUCK3Yf4xowBsJNcC+Cb6g/gm7C
aZ4+wmJwIcJBFjzAKwJmbFwUnikz8LBtsxUp9pE5NIJ9zSyCc0sfkCrnJgoWwnz8
Cv4JEBXCVMABwmLOHcJjqB5dlJcI5RIgPPAOoh2gAtaJwAdACBkrLC4AM+4hbZGC
dHxJgG2CVTygDRt8exYj0Ap8eyg14AeinTcr5CkAn6KWECwqI4xNQiS5CJUQR4U0
Rw4saCLMNswP3iRCfVOonboISBxtpGS0WwudTEItGkJUzH8YWVBLfFdiCxKgDQmZ
gCiwjGYsIUgUtj98aQAg/FVIcPxXaTVCaRwA/TocTVBmHHp4UkcPQm78ahm3QCRB
r8+CCLMibdIH7AC+LqJzQnTCbkQ1wmhCUcJ8wBjCbeQEwmLJGXAHEDRIIfxpImL0
rnCZI4zQEd+EwA30pvA9X62OooJBAnrUFn8hHykCaXxGPSUCXYqgwn+4NZKNBD6g
M8uwYm0CetQAwlFQHGJpoAJiSQ42eYQ9NekDzq7hh/xgKG9CURqcoql9rtuNIkEs
HKghhDhiYwJ5An6jk3RG5AG8Pk0+fGPQBewFomL8S0J+eLEYAG89MK3QJ6418Cf8
U0JHYkGiVOCPolZYH6JHmjNYCcM4wkQRs6J2BBzFntINom3CeEJhYnz8XqJP/GLi
aCJNwngiSuJejqxiY9wmYkX4NmJHixjiaE0NFC8jFMAETFE5GwJcqba/iXQZPYL+
GFxQgzXrKSe6BodKuTO4dR4zoHcXB5cymjeio62QVvYXB7M4XGcQMy3RjT8Hwkec
cak3wnd7PIJtnDpiQeJ3SAvkCRAYWA0QOOJ54lueJMA3vHEKDwAjISS9orMGRZVA
CqIgwD44lKIuYTMAFKIzgBcVPTRsfHvYONAvhwKdF/QKfExIq8gQCRZuDHwFYL3U
BlAvOgEiY5AQiZQKuOidvBboF+aB2FRCSGOY3FNTsp88Qng3m1xn0HPsc0RDh6Ci
UkB0YqVITNiOVDgYNMAGPGgLPBuzWII4Dx0jJxsUuUJQ/HziCPxrw5j8bUJXjFai
T4xlAEziSaJLomYSZ42p4kKuJOJskCbiSEJy4nHCbK8n64RiZ0J9YmefO6JAJon8
cvxb3JPzHr4r/DDuBDgSWHJiRAJgYmcQlFJqAlECVFAtkAAsPmJWYDRid9ywlB3Q
jQJ0UkJLBDgn6CwUJmgjkBWhlVAmUlKCaGJSAwS4GpAhXDt8laJ74iB7GuJ3/EJh
Gksb8CpOonU5tAWgg8aNYkdCXWJuwlwyNm4aTrUIDx0MUlAwO2JfQlwbmgelKCqU
USwuIFTbvZJg+TLCevxD/FYLs3YLh70GK/xp0DUQIBwNkmTCX8+3+DnWu6wFVCzZ
r9A04mOibOJLIlmiTIqeEC2IKEor5AACPYRJM6+oAFJeiBwcn0Q/Ek7QGMkysDiU
EA8Ceh9CXnxmQKEidvODOBvSVQaoAlDSdbW+4nDCVmJghCfxHroJGhZIBnKoMk5i
UlJpKBmlLuGUMmwIDDJvgjCCHIs2oFIyWdQBjCyENDJNVEwwGPAn0kc7jeJARQ00
UEISciZDoIiLCLfoss4hgETFP7RIyxPAfgivhZHoTIKnwGK7mZAO8LEjnf4qFKs5
AxaHiHJ9FAxv6Gc7tfOfkBZQrjJKUmSipBA1lB3gBjJxMnwyVhJhwA3AMoAZqTEA
NaRkwBfOFuAFwDoTLIA1CYgOM+4WIlo8Ub8zrAUFE4JKDRz2iOJalJ50O94IjDgA
jeQUMBgHMlQg+ArCRvx9kiuqn8g7YD+oGxyBMjUQBXxHIlV8VyJxtq18SkJ5DiKS
UuB0xEpJKeEcSy+ti6uOsrSieLYAeSyQAWB3ACGSUqJxkkqiaZJNQnqiVtx2A6r3
lZJrSFGiUyJ20nYEFsu5/F9ieoQanCYQruBlJFuyQtJODAyhptJJ0m2SdLAiwkpc
NZAeYB9aI4gzCwmKG2Jg4nFiUvxzEgJwG7A2ipu8K9gUEgjSfqJz0kpcCwEoqHVg
GHwNUntjNPJw8nkcPPJjVyLyX10QUlxhuTJ+RJ3otGBifTEzuWhg7wVsd2xpqHxG
qLJXy7QSY+0kskDiUWJ64mdiWTugRSbycJI28kqyRIA9wAdAFiWOoissOiAdISEA
MC4OGEwAA1kNCaEAJRG6o49qsh4PGAzvDmA/xLe5Mzi/qDqzvh8CWoQRpeEgmI90
KhgE7C+CFFQXsnBCWCJYQlowIHJNJ7RCQp+EkmwAlJJwf408XaRyQnQURHJ9IHro
c3xT7R1AirQ1VB5Cc5s6/YRFjf4hFCyCvKJiom+wcqJJPiqiepg68ap4ZZJIkFv4
N2JpiBT8BjehUDeiahJZ4k30hhJ70rliTqytIlyoClIS4k7iR5JKjLUQC1JTOBtS
ZmA8il+EE5JF4mzSamsjXCK4BFQOCkmgMYpvonoSb+IJyiWKVYi3CTnMHYpaElKK
Y4p7xZ7ybvkNZbCUNTOiNHpAsOxXx5WAlfJnME3ycl4fkA3aHK6LinukG4pkEAfV
I5JE4lmKbNY4ACKQKaw4wQggJTQ3ABwsNAAhYBZAIcAlISlgI0ADAAsuhhhON4A+
FUAVSnVKbCAEADYACIA8bD3ALcEIIAkKSGSdSkNKf2wTSmZAJQoFSllpu0ppACNK
bcExJYtcTlO/SmDKZkALSksLpAA9SkDKZ0pzSm2Hg/UYylzKZkAuCzh/kspOQBdK
foAcDgRIuspUACbKR8AQQQhBPgAYQRFALsp+yleBD4EfgTXHCUpMynjKWJSwAQsh
FSEhSm0hAWkZynzKXGw5IQDKTV2hYC4AP6qbymZANzRDyFfKTh0IQDEKHGwiID5Z
GqwIs6OgIC0jLQSaKEoL9hAYMlcUKmIgECAxsmqKJTAPGD0ZHqOpbAlKUYA4KI5K
fSIBAConoJsj0DIkPZcc2K3SLzk/yn6AKspKByKZLUpgYAkAJcplQCOOCa6JACsu
JAo4xyuDG6AdoA8fvypslw+gMC4CADKABTQwgTNhhKpqwCCqdSptyn9sJMpKIBwO
CsE8HqwlGYAwgDkSa0EqGG+BKyperh5ZsKpwYBMAHUEhKlM0NkA31zBADSwGclM0
NgARAAchGgAFqllAKsEBSm2qQqJSATCAFAAAYTpyc6p0LDgAOAo3/7BAIOAwABQs
CAAULBAAA===
``` ```
%% %%

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -2,6 +2,7 @@
<p style="text-align: center;"><a href="http://sasserisop.com">Back to Sasserisop homepage</a></p> <p style="text-align: center;"><a href="http://sasserisop.com">Back to Sasserisop homepage</a></p>
{{ partial "content.html" . }} {{ partial "content.html" . }}
<p style="font-size:25pt;">❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦</p></br> <p style="font-size:25pt;">❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦</p></br>
<p style="text-align: left;">Seeing people use these notes and benefitting from it makes me happy, so thanks for sticking around :) and remember to use what you learn for good! And to lead life with honor and integrity and be ethical engineers. Dr. Minev used to always stress the importance of this in his lectures, and I wholeheartedly agree.</p></br>
<p style="text-align: left;"><a href="https://git.sasserisop.com/Sasserisop/MATH201/src/branch/master">Gitea repository <img style="vertical-align: middle;" border="0" src="gitea-logo.svg" width="35" height="35"></a></p></br> <p style="text-align: left;"><a href="https://git.sasserisop.com/Sasserisop/MATH201/src/branch/master">Gitea repository <img style="vertical-align: middle;" border="0" src="gitea-logo.svg" width="35" height="35"></a></p></br>
<p style="text-align: left;"><a href="https://discord.gg/G3DWjgvP3A" target="_blank" rel="noopener noreferrer">Community discord <img style="vertical-align: middle;" border="0" src="discord-logo.svg" width="35" height="35"></a></p> <p style="text-align: left;"><a href="https://discord.gg/G3DWjgvP3A" target="_blank" rel="noopener noreferrer">Community discord <img style="vertical-align: middle;" border="0" src="discord-logo.svg" width="35" height="35"></a></p>
{{ end }} {{ end }}