diff --git a/content/Periodic functions (lec 19).md b/content/Periodic functions (lec 19).md index 77520a2..b18c2c8 100644 --- a/content/Periodic functions (lec 19).md +++ b/content/Periodic functions (lec 19).md @@ -48,21 +48,21 @@ $s^2Y+3sY+2Y=\mathcal{L}\{f\}= \frac{1}{s(1+e^{-1s})}$ $(s+1)(s+2)Y= \frac{1}{s(1+e^{-1s})}$ $Y(s)=\frac{1}{s(s+1)(s+2)} \frac{1}{1+e^{-s}}$ What property can we use to find the inverse of that? -> psst. We can use $\mathcal{L}\{f\}=\mathcal{L}\{f_{T}\} \frac{1}{1-e^{-Ts}}$ ;) +> psst. We can use $\mathcal{L}\{y\}=\mathcal{L}\{y_{T}\} \frac{1}{1-e^{-Ts}}$ ;) -$Y(s)=F(s) \frac{1}{1+e^{-s}}$ -But that second term has a $1+e^{-Ts}$ term in the denominator, it doesn't match up in the formula. There is a fix, peep this: -$Y(s)=F(s) \frac{1-e^{-s}}{(1+e^{-s})(1-e^{-s})}$ -$Y(s)=F(s) \frac{1-e^{-s}}{1-e^{-2s}}$ <- We are rather lucky, the 2 in the denominator matches $T$, the period of our function. -We can tuck away the numerator into $F(s)$ : -$Y(s)=\underbrace{ \frac{1-e^{-s}}{s(s+1)(s+2)} }_{ F(s) } \frac{1}{1-e^{-2s}}$ -Our equation is now in the correct form. We can now calculate the inverse of $F(s)$ -Split up $F(s)$ : +$Y(s)=Y_{T}(s) \frac{1}{1+e^{-s}}$ <- But this is not true! because: +That second term has a $1+e^{-Ts}$ term in the denominator, it doesn't match up in the formula. There is a fix, peep this: +$Y(s)=Y_{T}(s) \frac{1-e^{-s}}{(1+e^{-s})(1-e^{-s})}$ +$Y(s)=Y_{T}(s) \frac{1-e^{-s}}{1-e^{-2s}}$ <- We are rather lucky, the 2 in the denominator matches $T$, the period of our function. +We can tuck away the numerator into $Y_{T}(s)$ (this does redefine $Y_{T}$ to the correct expression, and the equation below is now true.) +$Y(s)=\underbrace{ \frac{1-e^{-s}}{s(s+1)(s+2)} }_{ Y_{T}(s) } \frac{1}{1-e^{-2s}}$ +Our equation is now in the correct form. We can now calculate the inverse of $Y_{T}(s)$ +Split up $Y_{T}(s)$ : $Y(s)= \underbrace{ (\frac{1}{s(s+1)(s+2)} }_{ F_{1}(s) }-\underbrace{ \frac{e^{-s}}{s(s+1)(s+2)} )}_{F_{2}(s) } \frac{1}{1-e^{-2s}}$ We can use partial fractions for the first term and $\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)$ for the second term. (Where $a=1$) -using partial fractions: +Using partial fractions: $\frac{1}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}$ $A(s+1)(s+2)+Bs(s+2)+Cs(s+1)=(A+B+C)s^2+(3A+2B+C)s+2A=1$ $2A=1\implies A=\frac{1}{2}$ @@ -72,12 +72,18 @@ subtract the two equations. $1+B=0\implies B=-1$ $\implies C=\frac{1}{2}$ $\mathcal{L}^{-1}\{F_{1}\}=\mathcal{L}^{-1}\{\frac{1}{2} \frac{1}{s}-\frac{1}{s+1}+\frac{1}{2} \frac{1}{s+2}\}$ -$\mathcal{L}^{-1}\{F_{1}\}=f_{1}=\frac{1}{2}-e^{-t}+\frac{1}{2}e^{-2t}$ +$\mathcal{L}^{-1}\{F_{1}\}=f_{1}(t)=\frac{1}{2}-e^{-t}+\frac{1}{2}e^{-2t}$ -Second term ($F_{2}(s)$): use $\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)=F_{2}(s)$ +Second term, $F_{2}(s)$, use: $\mathcal{L}\{u(t-a)f_{1}(t-a)\}=e^{-as}F_{1}(s)=F_{2}(s)$ $f_{2}(t)=u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$ -$y(t)=p(t)=f_{2a}(t)$ meaning $y(t)$ is a periodic function, with period of $T=2$ -$$f_{2a}(t)=\mathcal{L}^{-1}\{F_{1}(s)-F_{2}(s)\}=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}-u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$$ - +recombine the two parts: +$Y_{T}=F_{1}-F_{2}$ +$\mathcal{L}^{-1}\{Y_{T}\}=\mathcal{L}^{-1}\{F_{1}\}-\mathcal{L}^{-1}\{F_{2}\}$ +$y_{T}(t)=f_{1}(t)-f_{2}(t)$ +$y(t)$ is a periodic function, with period of $T=2$ +It's windowed form, $y_{T}$, is: +$$y_{T}(t)=\frac{1}{2}+\frac{1}{2}e^{-2t}-e^{-t}-u(t-1)(\frac{1}{2}-e^{-(t-1)}+\frac{1}{2}e^{-2(t-1)})$$ +Peep da plot! +![Plot](drawings/PeriodicGraph.png) diff --git a/content/drawings/PeriodicGraph.png b/content/drawings/PeriodicGraph.png new file mode 100644 index 0000000..44289f7 Binary files /dev/null and b/content/drawings/PeriodicGraph.png differ