forked from Sasserisop/MATH201
fix voparam
This commit is contained in:
parent
7386088b31
commit
1761284b70
|
@ -94,9 +94,9 @@ $-2B\cos t+2A\sin(t)=2\cos t(t)$
|
||||||
$\implies A=0,\ B=-1$
|
$\implies A=0,\ B=-1$
|
||||||
$y_{p_{1}}=-\sin(t)$
|
$y_{p_{1}}=-\sin(t)$
|
||||||
$y''-2y'+y=e^t\ln(t)$ cant use undetermined coefficients, use variation of parameters
|
$y''-2y'+y=e^t\ln(t)$ cant use undetermined coefficients, use variation of parameters
|
||||||
$y''_{p}(t)=v_{1}y_{1}+v_{2}y_{2}$
|
$y_{p}''(t)=v_{1}y_{1}+v_{2}y_{2}$
|
||||||
$=v_{1}e^t+v_{2}te^t$
|
$=v_{1}e^t+v_{2}te^t$
|
||||||
Compute v1 and v2. This time lets do it using the linear system for funzies:
|
Compute $v_{1}$ and $v_{2}$. This time let's do it using the linear system for practice:
|
||||||
eq1) $e^tv_{1}'+te^tv_{2}'=0$
|
eq1) $e^tv_{1}'+te^tv_{2}'=0$
|
||||||
eq2) $e^tv_{1}'+(te^t+e^t){v_{2}'}=e^t{\ln t}$
|
eq2) $e^tv_{1}'+(te^t+e^t){v_{2}'}=e^t{\ln t}$
|
||||||
subtract eq1 from eq2: $v_{2}'=\ln(t)$
|
subtract eq1 from eq2: $v_{2}'=\ln(t)$
|
||||||
|
@ -107,7 +107,7 @@ $=t\ln(t)-t$ no constant of integration.
|
||||||
compute $v_{1}$ now:
|
compute $v_{1}$ now:
|
||||||
$v_{1}'=-tv_{2}'$
|
$v_{1}'=-tv_{2}'$
|
||||||
$=-t\ln t$
|
$=-t\ln t$
|
||||||
integrate to get v_1:
|
integrate to get $v_1$:
|
||||||
$v_{1}=-\int t\ln t \, dt$
|
$v_{1}=-\int t\ln t \, dt$
|
||||||
integrate by parts (btw integration by parts will be the most important integration technique in this course):
|
integrate by parts (btw integration by parts will be the most important integration technique in this course):
|
||||||
$v_{1}=-\frac{1}{2}(t^2\ln t)-\int t^2\frac{1}{t} \, dt$
|
$v_{1}=-\frac{1}{2}(t^2\ln t)-\int t^2\frac{1}{t} \, dt$
|
||||||
|
@ -115,5 +115,6 @@ $=-\frac{1}{2}\left( t^2\ln t-\frac{t^2}{2} \right)=-\frac{1}{2}t^2\ln t+\frac{1
|
||||||
$y_{p}''(t)=(\frac{1}{2}t^2\ln t+\frac{1}{4}t^2)e^t+(t\ln t-t)te^t$
|
$y_{p}''(t)=(\frac{1}{2}t^2\ln t+\frac{1}{4}t^2)e^t+(t\ln t-t)te^t$
|
||||||
$y_{p}(t)=-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$
|
$y_{p}(t)=-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$
|
||||||
general solution is produced by adding the homogenous eq with $y_{p}(t)$
|
general solution is produced by adding the homogenous eq with $y_{p}(t)$
|
||||||
general:
|
general solution:
|
||||||
$$y(t)=c_{1}e^t+c_{2}te^t+y_{p}(t)$$
|
$$y(t)=c_{1}e^t+c_{2}te^t-\sin(t)+\frac{1}{2}t^2\ln(t)e^t-\frac{3}{4}t^2e^t$$
|
||||||
|
We are done.
|
Loading…
Reference in New Issue