forked from Sasserisop/MATH201
78 lines
9.2 KiB
Plaintext
78 lines
9.2 KiB
Plaintext
|
{
|
||
|
"nodes":[
|
||
|
{"id":"767241b95828457e","type":"text","text":"Integrate both sides","x":-57,"y":-360,"width":352,"height":80},
|
||
|
{"id":"3572d3ccf3a666dc","type":"text","text":"# Solution","x":-43,"y":-520,"width":325,"height":90},
|
||
|
{"id":"ac4eb08e6ceeccbd","type":"text","text":"# How to solve (almost) any differential equation:","x":-561,"y":-760,"width":1296,"height":136},
|
||
|
{"id":"76786ab85409e204","type":"text","text":"updated Sept 20","x":778,"y":-729,"width":301,"height":74},
|
||
|
{"id":"c6a536ee57248cfd","type":"file","file":"Math 201/Lectures/Separable equations (lec 1).md","x":-102,"y":-170,"width":441,"height":140},
|
||
|
{"id":"df03f8f1000d374a","type":"text","text":"If $y'=G(ax+by)$ \n\nsubstitute u=ax+by\n$\\frac{du}{dx}=a+b\\frac{ dy }{ dx}$","x":-251,"y":121,"width":341,"height":165},
|
||
|
{"id":"1044e4c2c0610a1e","type":"text","text":"if $y'=G\\left( \\frac{y}{x} \\right)$ \n\nsubstitute $u=\\frac{y}{x}$\n$\\frac{dy}{dx}=u+x{\\frac{du}{dx}}$","x":150,"y":121,"width":315,"height":165},
|
||
|
{"id":"c280d80abc2ea256","type":"file","file":"Math 201/Lectures/Homogenous equations (lec 2).md","x":-91,"y":380,"width":441,"height":149},
|
||
|
{"id":"ffbe5ed5493f9419","type":"text","text":"find $\\mu(x)$","x":-561,"y":156,"width":250,"height":60},
|
||
|
{"id":"78362e72fb0d54af","type":"file","file":"Math 201/Lectures/Linear equations (lec 2-3).md","x":-777,"y":323,"width":466,"height":170},
|
||
|
{"id":"e71a5b824ac543f8","type":"text","text":"combine terms using product rule","x":-590,"y":-30,"width":309,"height":103},
|
||
|
{"id":"70316d4131dc52c3","type":"file","file":"Math 201/Lectures/Bernoulli equations (lec 3).md","x":-884,"y":973,"width":465,"height":136},
|
||
|
{"id":"e70d1e3eea85e227","type":"text","text":"substitute","x":-669,"y":601,"width":250,"height":60},
|
||
|
{"id":"ba7ff8f24112635b","type":"text","text":"$\\frac{d}{dx}(y^{1-n}=u)$","x":-669,"y":709,"width":250,"height":60},
|
||
|
{"id":"f42f6dfefb957902","type":"text","text":"let $y^{1-n}=u$","x":-669,"y":811,"width":250,"height":60},
|
||
|
{"id":"5263b3c4f5b28ec6","type":"text","text":"Shortcut: $$y(x)=\\frac{1}{I(x)}\\int I(x)Q(x) \\, dx $$","x":-1006,"y":-37,"width":355,"height":193},
|
||
|
{"id":"109d20a863d93116","type":"text","text":"Solve system of linear equations","x":-28,"y":601,"width":316,"height":96},
|
||
|
{"id":"ece672db8e16ac5a","type":"text","text":"substitute $x=u+k$\n$y=v+l$","x":9,"y":769,"width":242,"height":156},
|
||
|
{"id":"120b3008bd08d69a","type":"file","file":"Math 201/Lectures/Linear coefficient equations (lec 4).md","x":-81,"y":1035,"width":422,"height":143},
|
||
|
{"id":"bebd67e847df16e1","type":"text","text":"Shortcut:\n$$I(x)=e^{\\int (1-n)P(x) \\, dx }$$\n$$y^{1-n}=\\frac{1}{I(x)}\\left( \\int (1-n)I(x)Q(x) \\, dx +C\\right)$$","x":-1333,"y":-430,"width":505,"height":260},
|
||
|
{"id":"3f081acda4f30a27","type":"text","text":"solve for $r_{1}$ & $r_{2}$ using quadratic formula","x":1315,"y":183,"width":274,"height":125},
|
||
|
{"id":"4ffaa5c9a7e8d22b","type":"text","text":"use principle of super position","x":1329,"y":29,"width":245,"height":96},
|
||
|
{"id":"cd7490f8cce0b6e0","type":"file","file":"Math 201/Lectures/Second order linear equations (lec 5-7).md","x":1215,"y":780,"width":474,"height":145},
|
||
|
{"id":"cd31ca74652b6936","type":"text","text":"substitute $y(t)=e^{rt}$ and its derivatives in the equation","x":1293,"y":556,"width":317,"height":122},
|
||
|
{"id":"e063ab92aef817e4","type":"text","text":"divide both sides of equation by $e^{rt}$","x":1322,"y":382,"width":260,"height":110},
|
||
|
{"id":"d98da52cb7139c25","type":"text","text":"$N(x,y)=\\frac{\\partial}{\\partial y} \\int M \\, dx+g(y)$\n","x":514,"y":354,"width":328,"height":77},
|
||
|
{"id":"ba1ef733f104894d","type":"text","text":"$M(x,y)=\\frac{\\partial}{\\partial x} \\int N \\, dy+g(x)$\n","x":875,"y":354,"width":340,"height":77},
|
||
|
{"id":"3cc6d2966364d19c","type":"text","text":"$F(x,y)=\\int M \\, dx+g(y)$","x":520,"y":497,"width":315,"height":94},
|
||
|
{"id":"a662aed47cf28581","type":"text","text":"$F(x,y)=\\int N \\, dy+g(x)$","x":894,"y":497,"width":302,"height":94},
|
||
|
{"id":"5dc72ba2fdd9b5af","type":"text","text":"solve for $g$","x":735,"y":177,"width":250,"height":60},
|
||
|
{"id":"dc3f64df05e215d4","type":"text","text":"use $F(x,y)=C$ and the $F(x,y)$ you got from the integral to obtain the general solution","x":665,"y":-83,"width":390,"height":180},
|
||
|
{"id":"90a401b5afaf25e6","type":"text","text":"Test for exactness:\n$\\frac{\\partial M}{\\partial y}=\\frac{\\partial N}{\\partial x}$","x":732,"y":697,"width":277,"height":102},
|
||
|
{"id":"d172c6ad7421b458","type":"file","file":"Math 201/Lectures/Exact equations (lec 4-5).md","x":674,"y":903,"width":393,"height":133},
|
||
|
{"id":"d3ffeeccd9e88489","type":"text","text":"$M(x,y)dx+N(x,y)dy=0$","x":674,"y":1036,"width":342,"height":83},
|
||
|
{"id":"937768cc91c15daa","type":"text","text":"$(a_{1}x+b_{1}y+c_{1})dx+(a_{2}x+b_{2}y+c_{2})dy=0$","x":-81,"y":1178,"width":516,"height":63},
|
||
|
{"id":"59f62d39b48e7b57","x":1663,"y":-306,"width":250,"height":60,"type":"text","text":"under-damped"},
|
||
|
{"id":"7089887c01722e83","x":1880,"y":-173,"width":250,"height":60,"type":"text","text":"over-damped"},
|
||
|
{"id":"b3e73030feee12da","x":1843,"y":33,"width":287,"height":50,"type":"text","text":"critically-damped"}
|
||
|
],
|
||
|
"edges":[
|
||
|
{"id":"7f7a9f03d9ef74ef","fromNode":"c6a536ee57248cfd","fromSide":"top","toNode":"767241b95828457e","toSide":"bottom"},
|
||
|
{"id":"eb189cf0bae0ff74","fromNode":"767241b95828457e","fromSide":"top","toNode":"3572d3ccf3a666dc","toSide":"bottom"},
|
||
|
{"id":"e78d22577d8aaefd","fromNode":"c280d80abc2ea256","fromSide":"top","toNode":"1044e4c2c0610a1e","toSide":"bottom"},
|
||
|
{"id":"91f77149289c989b","fromNode":"1044e4c2c0610a1e","fromSide":"top","toNode":"c6a536ee57248cfd","toSide":"bottom"},
|
||
|
{"id":"48ecc47cc360584a","fromNode":"109d20a863d93116","fromSide":"top","toNode":"c280d80abc2ea256","toSide":"bottom"},
|
||
|
{"id":"c33cf1589a1be354","fromNode":"78362e72fb0d54af","fromSide":"top","toNode":"ffbe5ed5493f9419","toSide":"bottom"},
|
||
|
{"id":"427e1da1bd931c17","fromNode":"ffbe5ed5493f9419","fromSide":"top","toNode":"e71a5b824ac543f8","toSide":"bottom"},
|
||
|
{"id":"711bf866628f9ae7","fromNode":"78362e72fb0d54af","fromSide":"top","toNode":"5263b3c4f5b28ec6","toSide":"bottom"},
|
||
|
{"id":"12a51353c04f3a6e","fromNode":"70316d4131dc52c3","fromSide":"top","toNode":"f42f6dfefb957902","toSide":"bottom"},
|
||
|
{"id":"9a3b2bfa92b2a958","fromNode":"f42f6dfefb957902","fromSide":"top","toNode":"ba7ff8f24112635b","toSide":"bottom"},
|
||
|
{"id":"65ae753100e1a028","fromNode":"ba7ff8f24112635b","fromSide":"top","toNode":"e70d1e3eea85e227","toSide":"bottom"},
|
||
|
{"id":"68a17b36a8f9823d","fromNode":"e70d1e3eea85e227","fromSide":"top","toNode":"78362e72fb0d54af","toSide":"bottom"},
|
||
|
{"id":"bbc151d3f261f179","fromNode":"5263b3c4f5b28ec6","fromSide":"top","toNode":"3572d3ccf3a666dc","toSide":"left"},
|
||
|
{"id":"473fd48634427ca8","fromNode":"a662aed47cf28581","fromSide":"top","toNode":"ba1ef733f104894d","toSide":"bottom"},
|
||
|
{"id":"c3fd9e04ae24009a","fromNode":"3cc6d2966364d19c","fromSide":"top","toNode":"d98da52cb7139c25","toSide":"bottom"},
|
||
|
{"id":"6f5e1fd90c03ff8e","fromNode":"cd7490f8cce0b6e0","fromSide":"top","toNode":"cd31ca74652b6936","toSide":"bottom"},
|
||
|
{"id":"256d32160fde6619","fromNode":"c280d80abc2ea256","fromSide":"top","toNode":"df03f8f1000d374a","toSide":"bottom"},
|
||
|
{"id":"06197d071305053e","fromNode":"df03f8f1000d374a","fromSide":"top","toNode":"c6a536ee57248cfd","toSide":"bottom"},
|
||
|
{"id":"2930b4b645b64fe6","fromNode":"e71a5b824ac543f8","fromSide":"top","toNode":"c6a536ee57248cfd","toSide":"left"},
|
||
|
{"id":"3b69d186f470909b","fromNode":"cd31ca74652b6936","fromSide":"top","toNode":"e063ab92aef817e4","toSide":"bottom"},
|
||
|
{"id":"f99e2001e302efe7","fromNode":"e063ab92aef817e4","fromSide":"top","toNode":"3f081acda4f30a27","toSide":"bottom"},
|
||
|
{"id":"5b2a75e3d7143938","fromNode":"4ffaa5c9a7e8d22b","fromSide":"top","toNode":"3572d3ccf3a666dc","toSide":"right"},
|
||
|
{"id":"499d02da2174d229","fromNode":"120b3008bd08d69a","fromSide":"top","toNode":"ece672db8e16ac5a","toSide":"bottom"},
|
||
|
{"id":"c71b296bcb5e22a4","fromNode":"ece672db8e16ac5a","fromSide":"top","toNode":"109d20a863d93116","toSide":"bottom"},
|
||
|
{"id":"c03033b857ed5370","fromNode":"d172c6ad7421b458","fromSide":"top","toNode":"90a401b5afaf25e6","toSide":"bottom"},
|
||
|
{"id":"a1ec7bb3ab65b0dd","fromNode":"90a401b5afaf25e6","fromSide":"top","toNode":"3cc6d2966364d19c","toSide":"bottom"},
|
||
|
{"id":"0f10794cffcd8720","fromNode":"90a401b5afaf25e6","fromSide":"top","toNode":"a662aed47cf28581","toSide":"bottom"},
|
||
|
{"id":"64cea137d4762a91","fromNode":"d98da52cb7139c25","fromSide":"top","toNode":"5dc72ba2fdd9b5af","toSide":"bottom"},
|
||
|
{"id":"bc954d168504507f","fromNode":"ba1ef733f104894d","fromSide":"top","toNode":"5dc72ba2fdd9b5af","toSide":"bottom"},
|
||
|
{"id":"85f3f204e5750054","fromNode":"5dc72ba2fdd9b5af","fromSide":"top","toNode":"dc3f64df05e215d4","toSide":"bottom"},
|
||
|
{"id":"87edf0438b210dcd","fromNode":"dc3f64df05e215d4","fromSide":"top","toNode":"3572d3ccf3a666dc","toSide":"right"},
|
||
|
{"id":"e54d4010a7ef62c8","fromNode":"bebd67e847df16e1","fromSide":"right","toNode":"3572d3ccf3a666dc","toSide":"left"},
|
||
|
{"id":"d24c3bef53a69a99","fromNode":"3f081acda4f30a27","fromSide":"top","toNode":"4ffaa5c9a7e8d22b","toSide":"bottom"},
|
||
|
{"id":"7a3e93142d63ca9f","fromNode":"70316d4131dc52c3","fromSide":"left","toNode":"bebd67e847df16e1","toSide":"bottom"}
|
||
|
]
|
||
|
}
|